Felipe Elorrieta López
![]() |
Teléfono: +56 0227182030
Oficina: 418
Correo: felipe.elorrieta[at]usach.cl
Jerarquía: Asociado
Títulos y/o Grados:
Licenciado en Estadística, Universidad de Santiago, 2010, Santiago, Chile. Ingeniero Estadístico, Universidad de Santiago, 2011, Santiago, Chile.
Magister en Estadística, Pontificia Universidad Católica, 2013, Santiago, Chile.
Doctor en Estadística, Pontificia Universidad Católica, 2018, Santiago, Chile.
|
Lineas de Investigación:
Series de Tiempo
Algoritmos de Machine Learning
Estadistica Espacial
Publicaciones Seleccionadas:
Varas S, Elorrieta F, Vargas C., Villalobos Dintrans P, Castillo C, Martinez Y, Ayala A, Maddaleno M. (2022) Factors associated with change in adherence to COVID-19 personal protection measures in the Metropolitan Region, Chile. PLOS ONE 17(5): e0267413. https://doi.org/10.1371/journal.pone.0267413
Ayala A, Villalobos Dintrans P, Elorrieta F, Castillo C, Vargas C, Maddaleno M. Identification of COVID-19 Waves: Considerations for Research and Policy. International Journal of Environmental Research and Public Health. 2021; 18(21):11058. https://doi.org/10.3390/ijerph182111058
Elorrieta, F., Eyheramendy, S., Palma, W., & Ojeda, C. (2021). A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series. Monthly Notices of the Royal Astronomical Society, 505(1), 1105-1116. https://doi.org/10.1093/mnras/stab1216
Elorrieta, F., Eyheramendy, S. and Palma, W. 2019. Discrete-time autoregressive model for unequally spaced time-series observations. Astronomy & Astrophysics, 627(A120):1–12. URL https://doi.org/10.1051/0004-6361/201935560
Eyheramendy, S., Elorrieta, F., and Palma, W. 2018. An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves. Monthly Notices of the Royal Astronomical Society, 481(4):4311–4322. URL http://dx.doi.org/10.1093/mnras/sty2487
Elorrieta, F., Eyheramendy, S., Jordán, A., Dékány, I., Catelan, M. 2016. A Machine Learned Classifier for Rr Lyrae in The VVV Survey. Astronomy & Astrophysics, 595(A82):1-11. URL https://doi.org/10.1051/0004-6361/201628700
Link de Interés:
GEMVEP: http://gemvep.usach.cl/
MAS: https://www.astrofisicamas.cl/
ALeRCE: http://alerce.science/
Red-Datos: http://reddatos.usach.cl/
Mis investigaciones y repositorios:
Google Scholar: https://scholar.google.cl/citations?hl=es&user=iux_OB0AAAAJ
Github: https://github.com/felipeelorrieta/
LinkedIn: https://www.linkedin.com/in/felipe-elorrieta-0165a259/
ResearchGate: https://www.researchgate.net/profile/Felipe_Elorrieta_Lopez
ORCID: https://orcid.org/0000-0002-1835-7433
Mis paquetes estadísticos:
iAR Package (R): https://cran.r-project.org/web/packages/iAR/index.html
iAR Package (Python): https://pypi.org/project/iar/