Some applications of the (bary)center method to the study of cocycles of isometries

Andrés Navas

Univ. of Santiago (Chile)
April 2011

Poincaré
Given $\alpha \notin \mathbb{Q} / \mathbb{Z}$ and $\psi: S^{1} \rightarrow \mathbb{R}$, we consider

$$
\begin{aligned}
F: S^{1} \times \mathbb{R} & \rightarrow S^{1} \times \mathbb{R} \\
(x, t) & \mapsto(x+\alpha, t+\psi(x))
\end{aligned}
$$

Cylindrical cascades

Poincaré
Given $T: X \rightarrow X$ and $\psi: X \rightarrow \mathbb{R}$, we consider

$$
\begin{aligned}
F: X \times \mathbb{R} & \rightarrow X \times \mathbb{R} \\
(x, t) & \mapsto(T(x), t+\psi(x))
\end{aligned}
$$

Poincaré

Given $T: X \rightarrow X$ and $\psi: X \rightarrow \mathbb{R}$, we consider

$$
\begin{aligned}
F: X \times \mathbb{R} & \rightarrow X \times \mathbb{R} \\
(x, t) & \mapsto(T(x), t+\psi(x))
\end{aligned}
$$

$$
F^{n}:(x, t) \mapsto\left(T^{n}(x), t+S_{n}(\psi)(x)\right)
$$

Poincaré

Given $T: X \rightarrow X$ and $\psi: X \rightarrow \mathbb{R}$, we consider

$$
\begin{gathered}
F: X \times \mathbb{R} \rightarrow X \times \mathbb{R} \\
(x, t) \mapsto(T(x), t+\psi(x)) \\
F^{n}:(x, t) \mapsto\left(T^{n}(x), t+S_{n}(\psi)(x)\right) \\
S_{n}(\psi)(x)=\psi(x)+\psi(T(x))+\cdots+\psi\left(T^{n-1}(x)\right)
\end{gathered}
$$

$$
\varphi \circ T-\varphi=\psi
$$

$$
\varphi \circ T-\varphi=\psi \Longrightarrow \varphi \circ T^{n}-\varphi=S_{n}(\psi)
$$

$$
\varphi \circ T-\varphi=\psi \Longrightarrow \varphi \circ T^{n}-\varphi=S_{n}(\psi)
$$

Theorem (Hedlund)

If T is minimal, the existence of a continuous solution φ is equivalent to that of a point $x_{0} \in X$ for which the Birkhoff sums $S_{n}(\psi)\left(x_{0}\right)$ are uniformly bounded.

$$
\varphi \circ T-\varphi=\psi \Longrightarrow \varphi \circ T^{n}-\varphi=S_{n}(\psi)
$$

Theorem (Hedlund)

If T is minimal, the existence of a continuous solution φ is equivalent to that of a point $x_{0} \in X$ for which the Birkhoff sums $S_{n}(\psi)\left(x_{0}\right)$ are uniformly bounded.

Theorem (Livšic)

If T is a C^{2} top. transitive, Anosov diffeomorphism and ψ is Hölder, then the existence of a Hölder solution φ is equivalent to that for each periodic point $x=T^{n}(x)$ one has $S_{n}(\psi)(x)=0$.

$$
\varphi \circ T-\varphi=\psi \Longrightarrow \varphi \circ T^{n}-\varphi=S_{n}(\psi)
$$

Theorem (Hedlund)
If T is minimal, the existence of a continuous solution φ is equivalent to that of a point $x_{0} \in X$ for which the Birkhoff sums $S_{n}(\psi)\left(x_{0}\right)$ are uniformly bounded.

Theorem (Livšic)

If T is a C^{2} top. transitive, Anosov diffeomorphism and ψ is Hölder, then the existence of a Hölder solution φ is equivalent to that for each periodic point $x=T^{n}(x)$ one has $S_{n}(\psi)(x)=0$.

Partially hyperbolic systems: Katok-Kononenko, Wilkinson

$$
\varphi \circ T-\varphi=\psi \Longrightarrow \varphi \circ T^{n}-\varphi=S_{n}(\psi)
$$

Theorem (Hedlund)
If T is minimal, the existence of a continuous solution φ is equivalent to that of a point $x_{0} \in X$ for which the Birkhoff sums $S_{n}(\psi)\left(x_{0}\right)$ are uniformly bounded.

Theorem (Livšic)

If T is a C^{2} top. transitive, Anosov diffeomorphism and ψ is Hölder, then the existence of a Hölder solution φ is equivalent to that for each periodic point $x=T^{n}(x)$ one has $S_{n}(\psi)(x)=0$.

Partially hyperbolic systems: Katok-Kononenko, Wilkinson Regularity: Livšic, Guillemin-Kazhdan, Hurder-Katok, de la Llave, Nitika-Torok,...

A more general setting

$T \rightsquigarrow($ semi)group action on X

$T \rightsquigarrow($ semi)group action on X

$\psi \rightsquigarrow$ cocycle of affine isometries I

$$
T \rightsquigarrow(\text { semi)group action on } X
$$

$\psi \rightsquigarrow$ cocycle of affine isometries /
Γ : semigroup acting continuously on X and for each $g \in \Gamma$ there is a map $I(g, \cdot): X \rightarrow I$ som (H) such that

$$
I(g h, x)=I(g, h(x)) I(h, x)
$$

$$
T \rightsquigarrow(\text { semi)group action on } X
$$

$\psi \rightsquigarrow$ cocycle of affine isometries /
Γ : semigroup acting continuously on X and for each $g \in \Gamma$ there is a map $I(g, \cdot): X \rightarrow I$ som (H) such that

$$
I(g h, x)=I(g, h(x)) I(h, x)
$$

This leads to a skew action of Γ on $X \times H$:

$$
g:(x, v) \mapsto(g(x), I(g, x)(v))
$$

$$
T \rightsquigarrow(\text { semi)group action on } X
$$

$\psi \rightsquigarrow$ cocycle of affine isometries /
Γ : semigroup acting continuously on X and for each $g \in \Gamma$ there is a map $I(g, \cdot): X \rightarrow I$ som (H) such that

$$
I(g h, x)=I(g, h(x)) I(h, x)
$$

This leads to a skew action of Γ on $X \times H$:

$$
g:(x, v) \mapsto(g(x), I(g, x)(v))
$$

Example: $\Gamma \sim \mathbb{Z}=\langle T\rangle, H=\mathbb{R} \Longrightarrow I(n, x)(t):=t+S_{n}(\psi)(x)$

$$
T \rightsquigarrow(\text { semi)group action on } X
$$

$\psi \rightsquigarrow$ cocycle of affine isometries /
Γ : semigroup acting continuously on X and for each $g \in \Gamma$ there is a map $I(g, \cdot): X \rightarrow I$ som (H) such that

$$
I(g h, x)=I(g, h(x)) I(h, x)
$$

This leads to a skew action of Γ on $X \times H$:

$$
g:(x, v) \mapsto(g(x), I(g, x)(v))
$$

Example: $\Gamma \sim \mathbb{Z}=\langle T\rangle, H=\mathbb{R} \Longrightarrow I(n, x)(t):=t+S_{n}(\psi)(x)$
Example: $X=$ one point \Longrightarrow action of Γ by isometries on H

There exist $\Theta(g, x) \in U(H)$ and $\psi(g, x) \in H$ such that

$$
I(g, x)(v)=\Theta(g, x)(v)+\psi(g, x)
$$

There exist $\Theta(g, x) \in U(H)$ and $\psi(g, x) \in H$ such that

$$
I(g, x)(v)=\Theta(g, x)(v)+\psi(g, x)
$$

where

$$
\begin{gathered}
\Theta(g h, x)=\Theta(g, h(x)) \Theta(h, x) \\
\psi(g h)(x)=\Theta(g, h(x))(\psi(h)(x))+\psi(g)(x)
\end{gathered}
$$

There exist $\Theta(g, x) \in U(H)$ and $\psi(g, x) \in H$ such that

$$
I(g, x)(v)=\Theta(g, x)(v)+\psi(g, x)
$$

where

$$
\begin{gathered}
\Theta(g h, x)=\Theta(g, h(x)) \Theta(h, x) \\
\psi(g h)(x)=\Theta(g, h(x))(\psi(h)(x))+\psi(g)(x)
\end{gathered}
$$

We search for $\varphi: X \rightarrow H$ such that

$$
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x)
$$

[^0]$$
\text { Whenever } \Gamma=\langle T\rangle \text { with } T \text { minimal, Hedlund's theorem applies. }
$$

Whenever $X=$ point, Bruhat-Tits' lemma applies.

$$
\text { Whenever } \Gamma=\langle T\rangle \text { with } T \text { minimal, Hedlund's theorem applies. }
$$

Whenever $X=$ point, Bruhat-Tits' lemma applies.

Theorem (Coronel, N., Ponce)

If the Γ-action on X is minimal, then the existence of a bounded orbit for the skew dynamics implies (is equivalent to) the existence of a continuous solution to the cohomological equation.

$$
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x)
$$

$$
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(g(x))=\Theta(g, x) \varphi(x)+\psi(x)
$$

$$
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x))
$$

$$
\begin{gathered}
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x)) \\
x=\text { point } \Longrightarrow \varphi=I(g)(\varphi) \quad(\text { for all } g \in \Gamma)
\end{gathered}
$$

$$
\begin{gathered}
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x)) \\
x=\text { point } \Longrightarrow \varphi=I(g)(\varphi) \quad(\text { for all } g \in \Gamma)
\end{gathered}
$$

- A bounded orbit is an invariant bounded set S,

$$
\begin{gathered}
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x)) \\
x=\text { point } \Longrightarrow \varphi=I(g)(\varphi) \quad(\text { for all } g \in \Gamma)
\end{gathered}
$$

- A bounded orbit is an invariant bounded set S,
- The center of S is a fixed point in H.

$$
\begin{gathered}
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x)) \\
x=\text { point } \Longrightarrow \varphi=I(g)(\varphi) \quad(\text { for all } g \in \Gamma)
\end{gathered}
$$

- A bounded orbit is an invariant bounded set S,
- The center of S is a fixed point in H.

Chebyshev

The center of S is the center of the (unique) closed ball of smallest radious that contains S.

$$
\begin{gathered}
\varphi(g(x))-\Theta(g, x) \varphi(x)=\psi(x) \Longleftrightarrow \varphi(T(x))=I(g, x)(\varphi(x)) \\
x=\text { point } \Longrightarrow \varphi=I(g)(\varphi) \quad(\text { for all } g \in \Gamma)
\end{gathered}
$$

- A bounded orbit is an invariant bounded set S,
- The center of S is a fixed point in H.

Chebyshev

The center of S is the center of the (unique) closed ball of smallest radious that contains S.
$H \rightsquigarrow$ CAT (0) or uniformly locally convex space.

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,
- The map $x \mapsto S_{x}$ is equivariant,

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,
- The map $x \mapsto S_{x}$ is equivariant,
- $x \mapsto \operatorname{ctr}\left(S_{x}\right)$ solves our cohomological equation.

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,
- The map $x \mapsto S_{x}$ is equivariant,
- $x \mapsto \operatorname{ctr}\left(S_{x}\right)$ solves our cohomological equation.

Coronel, N., Ponce

- In finite dimension, this map is always continuous (elementary, but nontrivial).

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,
- The map $x \mapsto S_{x}$ is equivariant,
- $x \mapsto \operatorname{ctr}\left(S_{x}\right)$ solves our cohomological equation.

Coronel, N., Ponce

- In finite dimension, this map is always continuous
(elementary, but nontrivial).
- In infinite dimension, this map may fail to be continuous.

$$
\varphi(g(x))=I(g, x)(\varphi(x))
$$

- The closure of a bounded orbit is a compact subset $S \subset X \times H$ that is invariant under the Γ-action,
- Since the Γ-action on X is minimal, each $x \in X$ has a nonempty (and compact) fiber $S_{x}=\{v:(x, v) \in S\}$,
- The map $x \mapsto S_{x}$ is equivariant,
- $x \mapsto \operatorname{ctr}\left(S_{x}\right)$ solves our cohomological equation.

Coronel, N., Ponce

- In finite dimension, this map is always continuous (elementary, but nontrivial).
- In infinite dimension, this map may fail to be continuous. However a careful choice of S yields a continuous section (still elementary, but more subtle).

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action / leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action / leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

- Every action by isometries of $C(X, H)$ arises in this way (Banach-Stone).

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action I leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

- Every action by isometries of $C(X, H)$ arises in this way (Banach-Stone).
- The previous result transforms into a Bruhat-Tits type lemma in the space $C(X, H)$ (provided the Γ-action on X is minimal).

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action / leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

- Every action by isometries of $C(X, H)$ arises in this way (Banach-Stone).
- The previous result transforms into a Bruhat-Tits type lemma in the space $C(X, H)$ (provided the Γ-action on X is minimal).
- The same for $L^{\infty}(X, H)$.

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action I leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

- Every action by isometries of $C(X, H)$ arises in this way (Banach-Stone).
- The previous result transforms into a Bruhat-Tits type lemma in the space $C(X, H)$ (provided the Γ-action on X is minimal).
- The same for $L^{\infty}(X, H)$.

Theorem (Bader, Gelander, Monod)

Every action by isometries on $L^{1}(X, R)$ with a bounded orbit has a fixed point.

Isometric actions on $C(X, H), L^{\infty}(X, H)$, and $L^{1}(X, R)$

- A skew-action / leads to an action on a function space (graph transform):

$$
g(\varphi)(x)=I\left(g^{-1}, g^{-1}(x)\right)\left(\varphi\left(g^{-1}(x)\right)\right)
$$

- Every action by isometries of $C(X, H)$ arises in this way (Banach-Stone).
- The previous result transforms into a Bruhat-Tits type lemma in the space $C(X, H)$ (provided the Γ-action on X is minimal).
- The same for $L^{\infty}(X, H)$.

Theorem (Bader, Gelander, Monod)

Every action by isometries on $L^{1}(X, R)$ with a bounded orbit has a fixed point. The same holds for preduals of von Newmann algebras.

$$
H \rightsquigarrow \text { proper CAT }(0) \text { space. }
$$

$$
H \rightsquigarrow \text { proper CAT(0) space. }
$$

- We take $H=\operatorname{Pos}(n)$

$$
H \rightsquigarrow \text { proper CAT(0) space. }
$$

- We take $H=\operatorname{Pos}(n)$ on which $G L(n, R)$ acts by isometries:

$$
g: A \mapsto g A g^{t}
$$

$$
H \rightsquigarrow \text { proper CAT(0) space. }
$$

- We take $H=\operatorname{Pos}(n)$ on which $G L(n, R)$ acts by isometries:

$$
g: A \mapsto g A g^{t}
$$

Theorem (Coronel, N., Ponce)

Let $A: \Gamma \mapsto G L(n, R)$ be a cocycle with respect to a minimal
Γ-action on X. Assume there exists $C>0$ such that

$$
\left\|A(g, x)^{-1}\right\| \cdot\|A(g, x)\| \leq C \quad \forall g, \forall x
$$

$$
H \rightsquigarrow \text { proper CAT(0) space. }
$$

- We take $H=\operatorname{Pos}(n)$ on which $G L(n, R)$ acts by isometries:

$$
g: A \mapsto g A g^{t}
$$

Theorem (Coronel, N., Ponce)

Let $A: \Gamma \mapsto G L(n, R)$ be a cocycle with respect to a minimal Γ-action on X. Assume there exists $C>0$ such that

$$
\left\|A(g, x)^{-1}\right\| \cdot\|A(g, x)\| \leq C \quad \forall g, \forall x
$$

Then A is cohomologous to a cocycle taking values in $O(n, R)$:

$$
H \rightsquigarrow \text { proper CAT(0) space. }
$$

- We take $H=\operatorname{Pos}(n)$ on which $G L(n, R)$ acts by isometries:

$$
g: A \mapsto g A g^{t}
$$

Theorem (Coronel, N., Ponce)

Let $A: \Gamma \mapsto G L(n, R)$ be a cocycle with respect to a minimal Γ-action on X. Assume there exists $C>0$ such that

$$
\left\|A(g, x)^{-1}\right\| \cdot\|A(g, x)\| \leq C \quad \forall g, \forall x
$$

Then A is cohomologous to a cocycle taking values in $O(n, R)$: there exists a continuous $B: X \rightarrow G L(n, R)$ such that

$$
B(g(x)) A(x) B(x)^{-1} \in O(n, R), \quad \text { for all } g \in \Gamma, x \in X
$$

On Kalinin's theorem

$T: X \rightarrow X$: top. transitive Anosov,

On Kalinin's theorem

$T: X \rightarrow X:$ top transitive Anosov, $\quad A: X \rightarrow G L(n, R)$

On Kalinin's theorem

$T: X \rightarrow X:$ top transitive Anosov, $\quad A: X \rightarrow G L(n, R)$

$$
T^{n}(x)=x \Longrightarrow \prod_{i=0}^{n-1} A\left(T^{i}(x)\right)=I d
$$

$T: X \rightarrow X:$ top. transitive Anosov, $\quad A: X \rightarrow G L(n, R)$

$$
T^{n}(x)=x \Longrightarrow \prod_{i=0}^{n-1} A\left(T^{i}(x)\right)=l d
$$

Theorem (Kalinin)

If A is Hölder, then there exists a Hölder-continuous map $B \rightarrow G L(n, R)$ such that

$$
A(x)=B(T(x))^{-1} B(x)
$$

$T: X \rightarrow X$: top. transitive Anosov, $\quad A: X \rightarrow G L(n, R)$

$$
T^{n}(x)=x \Longrightarrow \prod_{i=0}^{n-1} A\left(T^{i}(x)\right)=l d
$$

Theorem (Kalinin)

If A is Hölder, then there exists a Hölder-continuous map $B \rightarrow G L(n, R)$ such that

$$
A(x)=B(T(x))^{-1} B(x)
$$

- This theorem should have a natural extension to cocycles with values into isometry groups of CAT(0)-spaces; K-Sadovskaya
$T: X \rightarrow X:$ top. transitive Anosov, $\quad A: X \rightarrow G L(n, R)$

$$
T^{n}(x)=x \Longrightarrow \prod_{i=0}^{n-1} A\left(T^{i}(x)\right)=l d
$$

Theorem (Kalinin)

If A is Hölder, then there exists a Hölder-continuous map $B \rightarrow G L(n, R)$ such that

$$
A(x)=B(T(x))^{-1} B(x)
$$

- This theorem should have a natural extension to cocycles with values into isometry groups of CAT(0)-spaces; K-Sadovskaya (use the Karlsson-Ledrappier ergodic theorem ?).

Almost-invariant sections: reduced cohomology

$$
\varphi(T(x))=I(T, x)(\varphi(x))
$$

Almost-invariant sections: reduced cohomology

$$
\varphi_{n}(T(x)) \sim I(T, x)\left(\varphi_{n}(x)\right)
$$

Almost-invariant sections: reduced cohomology

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(\varphi_{n}(T(x)), I(g, x)\left(\varphi_{n}(x)\right)\right)=0
$$

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(\varphi_{n}(T(x)), I(g, x)\left(\varphi_{n}(x)\right)\right)=0
$$

Theorem (Bochi-N., extending Avila-Bochi-Damanik)

Let $I: X \rightarrow \operatorname{Isom}(H)$ be a cocycle such that the drift $n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ is uniformly sublinear in x. Then there exist almost-solutions.

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(\varphi_{n}(T(x)), I(g, x)\left(\varphi_{n}(x)\right)\right)=0
$$

Theorem (Bochi-N., extending Avila-Bochi-Damanik)

Let $I: X \rightarrow \operatorname{Isom}(H)$ be a cocycle such that the drift $n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ is uniformly sublinear in x. Then there exist almost-solutions.

Using Furman's theorem we conclude:

Theorem (Bochi-N.)

Let $A: X \rightarrow G L(n, R)$ be a cocycle all of whose Lyapunov exponents are zero. Then A is C^{0}-close to a cocycle that is cohomologous to a cocycle taking values in $O(n)$.
$\psi: X \rightarrow R ; \quad \int_{X} \psi d \mu=0$ for every invariant probability μ
$\psi: X \rightarrow R ; \quad \int_{X} \psi d \mu=0$ for every invariant probability μ

$$
\varphi_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(\psi)\left(T^{-i}(x)\right)
$$

$\psi: X \rightarrow R ; \quad \int_{X} \psi d \mu=0$ for every invariant probability μ

$$
\begin{gathered}
\varphi_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(\psi)\left(T^{-i}(x)\right) \\
\varphi_{n}(T(x))=\varphi_{n}(x)+\psi(x)-\frac{S_{n-1}(\psi)\left(T^{-(n+1)}(x)\right)}{n}
\end{gathered}
$$

$$
\psi: X \rightarrow R ; \quad \int_{X} \psi d \mu=0 \text { for every invariant probability } \mu
$$

$$
\begin{gathered}
\varphi_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(\psi)\left(T^{-i}(x)\right) \\
\varphi_{n}(T(x))=\varphi_{n}(x)+\psi(x)-\frac{S_{n-1}(\psi)\left(T^{-(n+1)}(x)\right)}{n} \\
\left|\varphi_{n}(T(x))-\varphi_{n}(x)-\psi(x)\right|=\left|\frac{S_{n-1}(\psi)\left(T^{-n+1}(x)\right)}{n}\right| \longrightarrow 0
\end{gathered}
$$

$I: X \rightarrow \operatorname{Isom}(H) ; \quad \int_{X} \psi d \mu=0$ for every invariant probability μ

$$
\begin{gathered}
\varphi_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(\psi)\left(T^{-i}(x)\right) \\
\varphi_{n}(T(x))=\varphi_{n}(x)+\psi(x)-\frac{S_{n-1}(\psi)\left(T^{-(n+1)}(x)\right)}{n} \\
\left|\varphi_{n}(T(x))-\varphi_{n}(x)-\psi(x)\right|=\left|\frac{S_{n-1}(\psi)\left(T^{-n+1}(x)\right)}{n}\right| \longrightarrow 0
\end{gathered}
$$

$I: X \rightarrow \operatorname{Isom}(H) ; \quad n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ uniformly sublinear

$$
\begin{gathered}
\varphi_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(\psi)\left(T^{-i}(x)\right) \\
\varphi_{n}(T(x))=\varphi_{n}(x)+\psi(x)-\frac{S_{n-1}(\psi)\left(T^{-(n+1)}(x)\right)}{n} \\
\left|\varphi_{n}(T(x))-\varphi_{n}(x)-\psi(x)\right|=\left|\frac{S_{n-1}(\psi)\left(T^{-n+1}(x)\right)}{n}\right| \longrightarrow 0
\end{gathered}
$$

$I: X \rightarrow \operatorname{Isom}(H) ; \quad n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ uniformly sublinear

$$
\begin{gathered}
\varphi_{n}(x):=\operatorname{bar}\left\{v_{0}, I\left(1, T^{-1}(x)\right) v_{0}, \ldots, I\left(n-1, T^{-(n-1)}(x)\right) v_{0}\right\} \\
\varphi_{n}(T(x))=\varphi_{n}(x)+\psi(x)-\frac{S_{n-1}(\psi)\left(T^{-(n+1)}(x)\right)}{n} \\
\left|\varphi_{n}(T(x))-\varphi_{n}(x)-\psi(x)\right|=\left|\frac{S_{n-1}(\psi)\left(T^{-n+1}(x)\right)}{n}\right| \longrightarrow 0
\end{gathered}
$$

$I: X \rightarrow \operatorname{Isom}(H) ; \quad n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ uniformly sublinear

$$
\begin{gathered}
\varphi_{n}(x):=\operatorname{bar}\left\{v_{0}, I\left(1, T^{-1}(x)\right) v_{0}, \ldots, I\left(n-1, T^{-(n-1)}(x)\right) v_{0}\right\} \\
d\left(\varphi_{n}(T(x)), I(x) \varphi_{n}(x)\right)=\operatorname{dist}\left(\operatorname{bar}\left\{v_{0}, \ldots\right\}, \operatorname{bar}\left\{\ldots, I\left(n, T^{-n+1}(x)\right) v_{0}\right\}\right) \\
\left|\varphi_{n}(T(x))-\varphi_{n}(x)-\psi(x)\right|=\left|\frac{S_{n-1}(\psi)\left(T^{-n+1}(x)\right)}{n}\right| \longrightarrow 0
\end{gathered}
$$

$I: X \rightarrow \operatorname{Isom}(H) ; \quad n \rightarrow \operatorname{dist}\left(v_{0}, I(n, x) v_{0}\right)$ uniformly sublinear

$$
\begin{gathered}
\varphi_{n}(x):=\operatorname{bar}\left\{v_{0}, I\left(1, T^{-1}(x)\right) v_{0}, \ldots, I\left(n-1, T^{-(n-1)}(x)\right) v_{0}\right\} \\
d\left(\varphi_{n}(T(x)), I(x) \varphi_{n}(x)\right)=\operatorname{dist}\left(\operatorname{bar}\left\{v_{0}, \ldots\right\}, \operatorname{bar}\left\{\ldots, I\left(n, T^{-n+1}(x)\right) v_{0}\right\}\right) \\
d\left(\varphi_{n}(T(x)), I(x) \varphi_{n}(x)\right) \leq \frac{1}{n} d\left(v_{0}, I\left(n, T^{-n+1}(x)\right) v_{0}\right) \longrightarrow 0
\end{gathered}
$$

X : nonpositively curved in the sense of Buseman
$\operatorname{bar}_{1}(x)=x, \quad \operatorname{bar}_{2}(x, y)=$ midpoint between x and y
X : nonpositively curved in the sense of Buseman
$\operatorname{bar}_{1}(x)=x, \quad \operatorname{bar}_{2}(x, y)=$ midpoint between x and y
$\operatorname{bar}_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=\operatorname{bar}\left(\operatorname{bar}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n+1}\right), i=1, \ldots, n+1\right)$
X : nonpositively curved in the sense of Buseman

$$
\operatorname{bar}_{1}(x)=x, \quad \operatorname{bar}_{2}(x, y)=\text { midpoint between } x \text { and } y
$$

$$
\begin{gathered}
\operatorname{bar}_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=\operatorname{bar}\left(\operatorname{bar}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n+1}\right), i=1, \ldots, n+1\right) \\
\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{bar}_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
\end{gathered}
$$

X : nonpositively curved in the sense of Buseman

$$
\operatorname{bar}_{1}(x)=x, \quad \operatorname{bar}_{2}(x, y)=\text { midpoint between } x \text { and } y
$$

$$
\begin{gathered}
\operatorname{bar}_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=\operatorname{bar}\left(\operatorname{bar}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n+1}\right), i=1, \ldots, n+1\right) \\
\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{bar}_{n}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
\end{gathered}
$$

Contraction property

$$
d\left(\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right), \operatorname{bar}_{n}\left(y_{1}, \ldots, y_{n}\right)\right) \leq \frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, y_{i}\right)
$$

$$
\operatorname{bar}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right)=\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
\operatorname{bar}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right)=\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Problem: $\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{bar}_{2 n}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}\right)$?

$$
\operatorname{bar}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right)=\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Problem: $\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{bar}_{2 n}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}\right)$?

$$
\operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right)=\lim _{k \rightarrow \infty} \operatorname{bar}_{k n}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, \ldots, x_{1}, \ldots, x_{n}\right)
$$

$$
\operatorname{bar}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right)=\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Problem: $\operatorname{bar}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{bar}_{2 n}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}\right)$?
$\operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right)=\lim _{k \rightarrow \infty} \operatorname{bar}_{k n}\left(x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, \ldots, x_{1}, \ldots, x_{n}\right)\right.$

Contraction property

$$
d\left(\operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{x_{1}}+\cdots+\delta_{x_{n}}\right]\right), \operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{y_{1}}+\cdots+\delta_{y_{n}}\right]\right)\right) \leq \frac{1}{n} \inf _{\sigma \in S_{n}} \sum_{i=1}^{n} d\left(x_{i}, y_{\sigma(i)}\right)
$$

An L^{1} ergodic theorem in nonpositive curvature

$$
\begin{aligned}
& \text { In general: } \\
& d\left(\operatorname{bar}^{*}\left(\mu_{1}\right), \operatorname{bar}^{*}\left(\mu_{2}\right)\right) \leq W_{1}\left(\mu_{1}, \mu_{2}\right):=\inf _{\nu: \text { joining }} \int_{X \times X} d(x, y) d \nu(x, y)
\end{aligned}
$$

In general:

$$
d\left(\operatorname{bar}^{*}\left(\mu_{1}\right), \operatorname{bar}^{*}\left(\mu_{2}\right)\right) \leq W_{1}\left(\mu_{1}, \mu_{2}\right):=\inf _{\nu: \text { joining }} \int_{X \times X} d(x, y) d \nu(x, y)
$$

This allows to prove:

Theorem:

If T on (Ω, \mathbb{P}) is measure preserving $\varphi: \Omega \rightarrow X$ lies in $L^{1}(\Omega, X)$, then almost surely and in $L^{1}(\Omega, X)$ one has the convergence of

$$
\operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{\varphi(\omega)}+\delta_{\varphi(T \omega)}+\cdots+\delta_{\varphi\left(T^{n-1} \omega\right)}\right]\right)
$$

In general:

$d\left(\operatorname{bar}^{*}\left(\mu_{1}\right), \operatorname{bar}^{*}\left(\mu_{2}\right)\right) \leq W_{1}\left(\mu_{1}, \mu_{2}\right):=\inf _{\nu: \text { joining }} \int_{X \times X} d(x, y) d \nu(x, y)$
This allows to prove:

Theorem:

If T on (Ω, \mathbb{P}) is measure preserving $\varphi: \Omega \rightarrow X$ lies in $L^{1}(\Omega, X)$, then almost surely and in $L^{1}(\Omega, X)$ one has the convergence of

$$
\operatorname{bar}^{*}\left(\frac{1}{n}\left[\delta_{\varphi(\omega)}+\delta_{\varphi(T \omega)}+\cdots+\delta_{\varphi\left(T^{n-1} \omega\right)}\right]\right)
$$

This "extends" a theorem of T. Austin (previous results by Es-Sahib-Heinich and K.-T. Sturm)

Many thanks

Many thanks

- D. Coronel, A. Navas, M. Ponce. Bounded orbits versus invariant curves for cocycles of affine isometries.
- D. Coronel, A. Navas, M. Ponce. On the dynamics of non-reducible cylindrical vortices.
- J. Bochi, A. Navas. A geometric path from zero Lyapunov exponents to invariant sections for cocycles.
- A. Navas. An L^{1}-ergodic theorem in nonpositively curved spaces via a canonical barycenter map.

[^0]: Whenever $\Gamma=\langle T\rangle$ with T minimal, Hedlund's theorem applies.

