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Cylindrical cascades

Poincaré

Given α /∈ Q/Z and ψ : S1 → R, we consider

F : S1 × R → S1 × R

(x , t) 7→
(
x + α, t + ψ(x)

)



Cylindrical cascades

Poincaré

Given T : X → X and ψ : X → R, we consider

F : X × R → X × R

(x , t) 7→
(
T (x), t + ψ(x)

)

F n : (x , t) 7→
(
T n(x), t + Sn(ψ)(x)

)
Sn(ψ)(x) = ψ(x) + ψ(T (x)) + · · ·+ ψ(T n−1(x))
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The associated cohomological equation

ϕ ◦ T − ϕ = ψ

=⇒ ϕ ◦ T n − ϕ = Sn(ψ)

Theorem (Hedlund)

If T is minimal, the existence of a continuous solution ϕ is
equivalent to that of a point x0 ∈ X for which the Birkhoff sums
Sn(ψ)(x0) are uniformly bounded.

Theorem (Livšic)

If T is a C 2 top. transitive, Anosov diffeomorphism and ψ is
Hölder, then the existence of a Hölder solution ϕ is equivalent to
that for each periodic point x = T n(x) one has Sn(ψ)(x) = 0.

Partially hyperbolic systems: Katok-Kononenko, Wilkinson
Regularity: Livšic, Guillemin-Kazhdan, Hurder-Katok, de la Llave,
Nitika-Torok,...
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A more general setting

T  (semi)group action on X

ψ  cocycle of affine isometries I

Γ: semigroup acting continuously on X and for each g ∈ Γ there is
a map I (g , ·) : X → Isom(H) such that

I (gh, x) = I (g , h(x))I (h, x)

This leads to a skew action of Γ on X × H:

g : (x , v) 7→
(
g(x), I (g , x)(v)

)
Example: Γ ∼ Z = 〈T 〉,H = R =⇒ I (n, x)(t) := t + Sn(ψ)(x)

Example: X = one point =⇒ action of Γ by isometries on H
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The general cohomological equation

There exist Θ(g , x) ∈ U(H) and ψ(g , x) ∈ H such that

I (g , x)(v) = Θ(g , x)(v) + ψ(g , x),

where
Θ(gh, x) = Θ(g , h(x))Θ(h, x)

ψ(gh)(x) = Θ(g , h(x))
(
ψ(h)(x)

)
+ ψ(g)(x)

We search for ϕ : X → H such that

ϕ(g(x))−Θ(g , x)ϕ(x) = ψ(x)
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Bounded orbits imply existence of solutions

Whenever Γ = 〈T 〉 with T minimal, Hedlund’s theorem applies.

Whenever X = point, Bruhat-Tits’ lemma applies.

Theorem (Coronel, N., Ponce)

If the Γ-action on X is minimal, then the existence of a bounded
orbit for the skew dynamics implies (is equivalent to) the existence
of a continuous solution to the cohomological equation.



Bounded orbits imply existence of solutions

Whenever Γ = 〈T 〉 with T minimal, Hedlund’s theorem applies.

Whenever X = point, Bruhat-Tits’ lemma applies.

Theorem (Coronel, N., Ponce)

If the Γ-action on X is minimal, then the existence of a bounded
orbit for the skew dynamics implies (is equivalent to) the existence
of a continuous solution to the cohomological equation.



Bounded orbits imply existence of solutions

Whenever Γ = 〈T 〉 with T minimal, Hedlund’s theorem applies.

Whenever X = point, Bruhat-Tits’ lemma applies.

Theorem (Coronel, N., Ponce)

If the Γ-action on X is minimal, then the existence of a bounded
orbit for the skew dynamics implies (is equivalent to) the existence
of a continuous solution to the cohomological equation.



Bounded orbits imply existence of solutions

Whenever Γ = 〈T 〉 with T minimal, Hedlund’s theorem applies.

Whenever X = point, Bruhat-Tits’ lemma applies.

Theorem (Coronel, N., Ponce)

If the Γ-action on X is minimal, then the existence of a bounded
orbit for the skew dynamics implies (is equivalent to) the existence
of a continuous solution to the cohomological equation.



Bruhat-Tits’ lemma

ϕ(g(x))−Θ(g , x)ϕ(x)=ψ(x)

⇐⇒ ϕ(g(x))=Θ(g , x)ϕ(x)+ψ(x)
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Bruhat-Tits’ lemma

ϕ(g(x))−Θ(g , x)ϕ(x)=ψ(x) ⇐⇒ ϕ(T (x)) = I (g , x)(ϕ(x))

X = point =⇒ ϕ = I (g)(ϕ) (for all g ∈ Γ)

• A bounded orbit is an invariant bounded set S ,
• The center of S is a fixed point in H.

Chebyshev

The center of S is the center of the (unique) closed ball of smallest
radious that contains S .

H  CAT(0) or uniformly locally convex space.
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Proof à la Bruhat-Tits

ϕ(g(x)) = I (g , x)(ϕ(x))

• The closure of a bounded orbit is a compact subset S ⊂ X × H
that is invariant under the Γ-action,

• Since the Γ-action on X is minimal, each x ∈ X has a nonempty
(and compact) fiber Sx = {v : (x , v) ∈ S},
• The map x 7→ Sx is equivariant,

• x 7→ ctr(Sx) solves our cohomological equation.

Coronel, N., Ponce

– In finite dimension, this map is always continuous
(elementary, but nontrivial).
– In infinite dimension, this map may fail to be continuous.
However a careful choice of S yields a continuous section
(still elementary, but more subtle).
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Isometric actions on C (X ,H), L∞(X ,H), and L1(X ,R)

• A skew-action I leads to an action on a function space (graph
transform):

g(ϕ)(x) = I (g−1, g−1(x))(ϕ(g−1(x)))

• Every action by isometries of C (X ,H) arises in this way
(Banach-Stone).

• The previous result transforms into a Bruhat-Tits type lemma in
the space C (X ,H) (provided the Γ-action on X is minimal).

• The same for L∞(X ,H).

Theorem (Bader, Gelander, Monod)

Every action by isometries on L1(X ,R) with a bounded orbit has a
fixed point. The same holds for preduals of von Newmann algebras.
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Every action by isometries on L1(X ,R) with a bounded orbit has a
fixed point. The same holds for preduals of von Newmann algebras.



A Hedlund type theorem for matrix cocycles

H  proper CAT(0) space.

• We take H = Pos(n) on which GL(n,R) acts by isometries:

g : A 7→ gAg t

Theorem (Coronel, N., Ponce)

Let A : Γ 7→ GL(n,R) be a cocycle with respect to a minimal
Γ-action on X . Assume there exists C > 0 such that

‖A(g , x)−1‖ · ‖A(g , x)‖ ≤ C ∀g ,∀x .

Then A is cohomologous to a cocycle taking values in O(n,R):
there exists a continuous B : X → GL(n,R) such that

B(g(x))A(x)B(x)−1 ∈ O(n,R), for all g ∈ Γ, x ∈ X .
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On Kalinin’s theorem

T : X → X : top. transitive Anosov, A : X → GL(n,R)

T n(x) = x =⇒
n−1∏
i=0

A(T i (x)) = Id

Theorem (Kalinin)

If A is Hölder, then there exists a Hölder-continuous map
B → GL(n,R) such that

A(x) = B(T (x))−1B(x).

• This theorem should have a natural extension to cocycles with
values into isometry groups of CAT(0)-spaces; K-Sadovskaya
(use the Karlsson-Ledrappier ergodic theorem ?).
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Almost-invariant sections: reduced cohomology

ϕ(T (x)) = I (T , x)(ϕ(x))
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Almost-invariant sections: reduced cohomology

lim
n→∞

dist
(
ϕn(T (x)), I (g , x)(ϕn(x))

)
= 0

Theorem (Bochi-N., extending Avila-Bochi-Damanik)

Let I : X → Isom(H) be a cocycle such that the drift
n → dist(v0, I (n, x)v0) is uniformly sublinear in x . Then there exist
almost-solutions.

Using Furman’s theorem we conclude:

Theorem (Bochi-N.)

Let A : X → GL(n,R) be a cocycle all of whose Lyapunov
exponents are zero. Then A is C 0-close to a cocycle that is
cohomologous to a cocycle taking values in O(n).
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Proof à la Følner

ψ : X → R;

∫
X
ψ dµ = 0 for every invariant probability µ

ϕn(x) :=
1

n

n−1∑
i=0

Si (ψ)(T−i (x))

ϕn(T (x)) = ϕn(x) + ψ(x)− Sn−1(ψ)(T−(n+1)(x))

n

∣∣ϕn(T (x))− ϕn(x)− ψ(x)
∣∣ =

∣∣∣∣Sn−1(ψ)(T−n+1(x))

n

∣∣∣∣ −→ 0
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The “good” barycenter map

X : nonpositively curved in the sense of Buseman

bar1(x) = x , bar2(x , y) = midpoint between x and y

barn+1(x1, . . . , xn+1) = bar
(
bar(x1, ..., x̂i , ..., xn+1), i = 1, ..., n+1

)
barn(x1, . . . , xn) = barn(xσ(1), . . . , xσ(n))

Contraction property

d
(
barn(x1, . . . , xn), barn(y1, . . . , yn)

)
≤ 1

n

n∑
i=1

d(xi , yi )



The “good” barycenter map

X : nonpositively curved in the sense of Buseman

bar1(x) = x , bar2(x , y) = midpoint between x and y

barn+1(x1, . . . , xn+1) = bar
(
bar(x1, ..., x̂i , ..., xn+1), i = 1, ..., n+1

)
barn(x1, . . . , xn) = barn(xσ(1), . . . , xσ(n))

Contraction property

d
(
barn(x1, . . . , xn), barn(y1, . . . , yn)

)
≤ 1

n

n∑
i=1

d(xi , yi )



The “good” barycenter map

X : nonpositively curved in the sense of Buseman

bar1(x) = x , bar2(x , y) = midpoint between x and y

barn+1(x1, . . . , xn+1) = bar
(
bar(x1, ..., x̂i , ..., xn+1), i = 1, ..., n+1

)

barn(x1, . . . , xn) = barn(xσ(1), . . . , xσ(n))

Contraction property

d
(
barn(x1, . . . , xn), barn(y1, . . . , yn)

)
≤ 1

n

n∑
i=1

d(xi , yi )



The “good” barycenter map

X : nonpositively curved in the sense of Buseman

bar1(x) = x , bar2(x , y) = midpoint between x and y

barn+1(x1, . . . , xn+1) = bar
(
bar(x1, ..., x̂i , ..., xn+1), i = 1, ..., n+1

)
barn(x1, . . . , xn) = barn(xσ(1), . . . , xσ(n))

Contraction property

d
(
barn(x1, . . . , xn), barn(y1, . . . , yn)

)
≤ 1

n

n∑
i=1

d(xi , yi )



The “good” barycenter map

X : nonpositively curved in the sense of Buseman

bar1(x) = x , bar2(x , y) = midpoint between x and y

barn+1(x1, . . . , xn+1) = bar
(
bar(x1, ..., x̂i , ..., xn+1), i = 1, ..., n+1

)
barn(x1, . . . , xn) = barn(xσ(1), . . . , xσ(n))

Contraction property

d
(
barn(x1, . . . , xn), barn(y1, . . . , yn)

)
≤ 1

n

n∑
i=1

d(xi , yi )



Extension to probability measures

bar

(
1

n
[δx1 + · · ·+ δxn ]

)
= barn(x1, . . . , xn)

Problem: barn(x1, . . . , xn) = bar2n(x1, . . . , xn, x1, . . . , xn) ?

bar∗
(

1

n
[δx1 + · · ·+ δxn ]

)
= lim

k→∞
barkn(x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn)

Contraction property

d

(
bar∗

(1

n
[δx1+ · · ·+ δxn ]

)
, bar∗

(1

n
[δy1+ · · ·+ δyn ]

))
≤ 1

n
inf

σ∈Sn

n∑
i=1

d(xi , yσ(i))
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An L1 ergodic theorem in nonpositive curvature

In general:

d
(
bar∗(µ1), bar∗(µ2)

)
≤ W1(µ1, µ2) := inf

ν:joining

∫
X×X

d(x , y) dν(x , y)

This allows to prove:

Theorem:

If T on (Ω,P) is measure preserving ϕ : Ω → X lies in L1(Ω,X ),
then almost surely and in L1(Ω,X ) one has the convergence of

bar∗
(1

n

[
δϕ(ω) + δϕ(Tω) + · · ·+ δϕ(T n−1ω)

])
This “extends” a theorem of T. Austin (previous results by
Es-Sahib-Heinich and K.-T. Sturm)
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