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1 Introduction

1.1 General panorama

The dynamics of (non-)solvable groups of germs of diffeomorphisms around a fixed point is an
important subject that has been studied by many authors in connexion to foliations and differential
equations. There is, however, a natural group-theoretical aspect of this study of large interest. In
this direction, the classification of solvable groups of diffeomorphisms in dimension 1 has been
completed, at least in large regularity: see [6, 16] for the real-analytic case and [29] for the C2 case;
see also [3, 30] for the piecewise-affine case. (For the higher-dimensional case, see [1, 21].)

In the C1 context, this issue was indirectly addresed by Cantwell and Conlon in [8]. Indeed,
although they were interested on problems concerning smoothing of some codimension-1 foliations,
they dealt with a particular one for which the holonomy pseudo-group turns to be the Baumslag-
Solitar group. In concrete terms, they proved that a certain natural (non-affine) action of BS(1, 2)
on the closed interval is non-smoothable. Later, using the results of topological classification of
general actions of BS(1, 2) on the interval contained in [33], the whole1 picture was completed
in [18]: every C1 action of BS(1, n) on the closed interval with no global fixed point inside is
semiconjugate to the standard affine action.

Cantwell-Conlon’s proof uses exponential growth of the orbit of certain intervals to yield a con-
tradiction (such a behaviour is impossible close to a parabolic fixed point). This clever argument
was later used in [26] to give a counter-example to the converse of the Thurston stability theorem:
there exists a finitely-generated, locally indicable2 group with no faithful action by C1 diffeomor-
phisms of the interval. (See also [7].) As we will see, the relation with Thurston’s stability arises

1Some of the results of this work strongly complements this. For instance, as we state below, the semiconjugacy
is necessarily a (topological) conjugacy.

2Recall that a group is said to be locally indicable if every nontrivial, finitely-generated subgroup has a surjective
homomorphism onto Z. Every such group admits a faithful action by homeomorphisms of the interval provided it is
countable; see [27].
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not only at the level of results. Indeed, although Cantwell-Conlon’s argument is very different, an
arsenal of techniques close to Thurston’s that may be applied in this context and related ones (see
e.g. [21]) was independently developed in [4] (see also [5]). The aim of this work is to put together
all these ideas (and to introduce new ones) to get a quite complete picture of all possible C1 actions
of a very large class of solvable groups, namely the Abelian-by-cyclic ones. We will show that these
actions are rigid provided the cyclic factor acts hyperbolically on the Abelian subgroup, and that
this rigidity dissapears in the non-hyperbolic case.

The idea of relating a certain notion of hyperbolicity (or at least, of growth of orbits) to C1

rigidity phenomena for group actions on 1-dimensional spaces has been proposed –though not fully
developed– by many authors. This is explicitly mentioned in [26], while it is implicit in the examples
of [34]. More evidence is provided by the examples in [9, 12, 28] relying on the original constructions
of Pixton [31] and Tsuboi [37]. All these works suggest that actions with orbits of (uniformly
bounded) subexponential growth should be always C1-smoothable3 (compare [8, Conjecture 2.3])
and realizable in any neighborhood of the identity/rotations [24]. Despite this evidence and the
results presented here, a complete understanding of all rigidity phenomena arising in this context
remains far from being reached. More generally, the full picture of groups of homeomorphisms
that can/cannot act faithfully by C1 diffeomorphisms remains obscure. A particular case that is
challenging from both the dynamical and the group-theoretical viewpoints can be summarized in
the next

Question 1.1. What are the subgroups of the group of piecewise affine homeomorphisms of the
circle/interval that are topologically conjugate to groups of C1 diffeomorphisms ?

For simplicity, in this work, we will only consider actions by orientation-preserving maps.

1.2 Statements of Results

Given a matrix A = (αi,j) ∈ Md(Z) ∩ GLd(R), d ≥ 1, let us consider the meta-Abelian group GA
with presentation

GA :=
〈
a, b1, . . . , bd | bi bj = bj bi , abia

−1 = b
α1,i

1 · · · bαd,id

〉
. (1)

It is known that every finitely-presented, torsion-free, Abelian-by-cyclic group has this form [2] (see
also [13]).

It is quite clear that Md(Z)∩GLd(R)⊂GLd(Q). In particular, the group GA above is isomorphic
to a subgroup of ZnAQd. In a slightly more general way, from now on we consider A ∈ GLd(Q), and
we let G=ZnAH be a non-Abelian finitely generated subgroup of ZnAQd such that rankQ(H)=d.
Observe that G may fail to be finitely-presented. We can easily describe the groups G as above
admitting a faithful affine action.

Proposition 1.2. Suppose that the matrix A ∈ GLd(Q) is Q-irreducible and that the Q-rank of
H ⊂ Qd equals d. Then Z nA H has a faithful affine action if and only if A has a positive real
eigenvalue.

Next, we assume that A has all its eigenvalues of norm 6= 1. Our main result is the following

3Actually, they should be C1+τ -smoothable in case of polynomial growth, with τ depending on the degree of the
polynomial; see [9, 11, 23].
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Theorem 1.3. Assume A ∈ GLd(Q) has no eigenvalue of norm 1, and let G be a subgroup of
Z nA Qd of the form G = Z nA H, where rankQ(H) = d. Then every representation of G into
Diff1

+([0, 1]) whose image group admits no global fixed point in (0, 1) is topologically conjugate to a
representation into the affine group.

For the proof of Theorem 1.3, let us begin by considering an action of a general group G as
above by homeomorphisms of [0, 1]. We have the next generalization of [33, §4.1]:

Lemma 1.4. Let G be a group as in Theorem 1.3. Assume that G acts by homeomorphisms of the
closed interval with no global fixed point in (0, 1). Then either there exists b ∈ H fixing no point in
(0, 1), in which case the action of G is semiconjugate to that of an affine group, or H has a global
fixed point in (0, 1), in which case the element a ∈ G acts without fixed points inside (0, 1).

In virtue of this lemma, the proof of Theorem 1.3 reduces to the next two propositions.

Proposition 1.5. Let G be a group as in Theorem 1.3. Assume that G acts by homeomorphisms
of [0, 1]. If the subgroup H acts nontrivially but has a global fixed point inside (0, 1), then the action
of G cannot be by C1 diffeomorphisms.

Proposition 1.6. Let G be a group as in Theorem 1.3. Then every representation of G into
Diff1

+([0, 1]) with non-Abelian image is minimal on (0, 1).

The structure theorem for actions is complemented by a result of rigidity for the multipliers of
the group elements mapping into homotheties. More precisely, we prove

Theorem 1.7. Let G = Z nA H be a group as in Theorem 1.3, with a ∈ G being the generator of
Z (whose action on H is given by A). Assume that G acts by C1 diffeomorphisms of [0, 1] with no
fixed point in (0, 1) and the image group is non-Abelian. Then the derivative of a at the interior
fixed point coincides with the ratio of the homothety to which a is mapped under the homomorphism
of G into the affine group given by Theorem 1.3. More generally, for each k 6= 0 and all b ∈ H, the
derivative of akb at its interior fixed point equals the kth-power of the ratio of that homothety.

Besides several consequences of the preceding theorem given in the next section, there is an
elementary one of particular interest. Namely, if we consider actions as in Theorem 1.3 but allowing
the possibility of global fixed points in (0, 1), then only finitely many components of the complement
of the set of these points are such that the action restricted to them has non-Abelian image.
Otherwise, the element a would admit a sequence of hyperbolic fixed points, all of them with the
same multiplier, converging to a parabolic fixed point, which is absurd.

Theorem 1.7 could lead one to think that the topological conjugacy to the affine action is actually
smooth at the interior.4 (Compare [35].) Nevertheless, a standard application of the Anosov-Katok
technique leads to C1 (faithful) actions for which this is not the case. As we will see, in higher
regularity, the rigidity holds: if r ≥ 2, then for every faithful action by Cr diffeomorphisms with no
interior global fixed point, the conjugacy is a Cr diffeomorphism at the interior. It seems to be an
interesting problem to try to extend this rigidity to the class C1+τ . Another interesting problem
is to construct actions by C1 diffeomorphisms that are conjugate to actions of non-Abelian affine
groups though they are non-ergodic with respect to the Lebesgue measure. (Compare [20].)

The hyperbolicity assumption for the matrix A is crucial for the validity of Theorem 1.3. Indeed,
Abelian groups of diffeomorphisms acting nonfreely (as those constructed in [37]) provide easy
counter-examples with all eigenvalues equal to 1. A more delicate construction leads to the next

4In general, the conjugacy above is not smooth at the endpoints even in the real-analytic case: see [6] for a very
complete discussion on this.

3



Theorem 1.8. Let A ∈ GLd(Q) be non-hyperbolic and Q-irreducible. Then G := Z nA Qd admits
a faithful action by C1 diffeomorphisms of the closed interval that is not semiconjugate to an affine
one though has no global fixed point in (0, 1).

This work is closed by some extensions of our main theorem to actions by C1 diffeomorphisms of
the circle. Roughly, we rule out Denjoy-like actions in class C1 for the groups G above, though such
actions may arise in the continuous cathegory (and also in the Lipschitz one; see [25, Proposition
2.3.15]). In particular, we have:

Theorem 1.9. Let G be a group as in Theorem 1.3. Assume that G acts by C1 diffeomorphisms
of the circle with non-Abelian image. Then the action admits a finite orbit.

This theorem clarifies the whole picture. Up to a finite-index subgroup G0, the action has global
fixed points. The group G0 can still be presented in the form Z nAk H0 for a certain k ≥ 1; as
Ak is hyperbolic, and application of Theorem 1.3 to the restriction of the action of G0 to intervals
between global fixed points shows that these are conjugate to affine actions. Thus, roughly, G
is a finite (cyclic) extension of a subgroup of a product of affine groups acting on intervals with
pairwise disjoint interior. Moreover, only finitely many of these affine groups can be non-Abelian.
(Otherwise, by Theorem 1.7, there would be accumulation of hyperbolic fixed points of ak with the
same multiplier towards a parabolic fixed point.)

To conclude, let us mention that the examples provided by Theorem 1.8 can be adapted to
the case of the circle. More precisely, if A ∈ GLd(Q) is non-hyperbolic and Q-irreducible, then
G := Z nA Qd admits a faithful action by C1 circle diffeomorphisms having no finite orbit.

1.3 Some comments and complementary results/examples

Although the results presented so far only concern certain solvable groups, they lead to relevant
results for other classes of groups. Let us start with an almost direct consequence of Theorem 1.7.
For any pair of positive integers m,n, let BS(1,m; 1, n) be the group defined by

BS(1,m; 1, n) :=
〈
a, b, c | aba−1 = bm, aca−1 = cn

〉
= BS(1,m) ∗〈a〉 BS(1, n).

In other words, the subgroups generated by a, b and a, c are isomorphic to BS(1,m) and BS(1, n),
respectively, and no other relation is assumed.

Notice that every element ω ∈ BS(1,m; 1;n) can be written in a unique way as ω = akω0,
where k∈Z and ω0 belongs to the subgroup generated by b, c and their roots. One easily deduces
that BS(1,m; 1, n) is locally indicable, hence it admits a faithful action by homeomorphisms of the
interval (see the second footnote in page 1). However, it is easy to give a more explicit embedding of
BS(1,m; 1, , n) into Homeo+([0, 1]). Indeed, start by associating to a a homeomorphism f without
fixed points in (0, 1). Then choose a fundamental domain I of f and homeomorphisms g0, h0
supported on I and generating a rank-2 free group. Finally, extend g0 and h0 into homeomorphisms
g, h of [0, 1] so that fgf−1 = gm and fhf−1 = hn hold. Then the action of B(1,m; 1, n) defined by
associating g to b and h to c is faithful.

In what concerns smooth actions of BS(1,m; 1, n) on the interval, we have:

Theorem 1.10. Let m,n be distinct positive integers. Given a representation of B(1,m; 1, n) into
Diff1

+([0, 1]), let us denote by f, g, h the images of a, b, c, respectively. Then, the interiors of the
supports of g and h are disjoint. In particular, g and h commute, hence the action is not faithful.
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Proof: The supports of g and h consist of unions of segments bounded by successive non-repelling
fixed points of f ; in particular, any two of these segments either coincide or have disjoint interior.
If one of these segments is contained in the support of g (resp., h), then Theorem 1.7 asserts that
its interior contains a unique hyperbolically-repelling fixed point of f with derivative equal to m
(resp., n). Since m 6= n, the open segments in the supports of g and h must be disjoint. �

Remark 1.11. Theorem 1.10 admits straightforward generalizations replacing the Baumslag-
Solitar groups BS(1,m) and BS(1, n) by groups associated (as in Theorem 1.3) to matrices A
and B that are hyperbolically expanding (i.e. with every eigenvalue of modulus > 1) and have
distinct eigenvalues.

Below we give two other results in the same spirit. The first of these is new, whereas the second
is already known though our methods provide a new and somewhat more conceptual proof. More
sophisticated examples will be treated elsewhere.

Let us consider the group Gλ,λ′ generated by the transformations of the real-line

c : x 7→ x+ 1, b : x 7→ λx, a : x 7→ sgn(x)|x|λ′ ,

where λ, λ′ are positive numbers. These groups are known to be non-solvable for certain parameters
λ′. Indeed, if λ′ is a prime number, then the elements a and c generate a free group (see [10]).

Theorem 1.12. For all integers m,n larger than 1, the group Gm,n does not embed into the group
C1 diffeomorphisms of the closed interval.

Proof: Assume that Gm,n can be realized as a group of C1 diffeomorphisms of [0, 1]. Then Theorem
1.3 applies to both subgroups 〈b, c〉 and 〈a, b〉 (which are isomorphic to BS(1,m) and BS(1, n),
respectively). Let us consider a maximal open subinterval I = (x0, x1) that is invariant under c
and where the dynamics of c has no fixed point. The relation bcb−1 = cm shows that the action of
b on I is nontrivial. Proposition 1.5 then easily implies that b preserves I, and by Theorem 1.3, the
restriction of the action of 〈b, c〉 to I is conjugate to an affine action. Let y be the fixed point of b
inside I. As before, the relation aba−1 = bn forces a to fix all points x0, y, x1; moreover, the actions
of 〈a, b〉 on both intervals (x0, y) and (y, x1) are conjugate to affine actions. Finally, notice that
the relation aba−1 = bn forces the derivative of b to be equal to 1 at y. However, this contradicts
Theorem 1.7 when applied to 〈b, c〉. �

As another application of our results, we give an alternative proof of a theorem from [26]:

Theorem 1.13. If Γ is a non-solvable subgroup of SL2(R), then Γ n Z2 does not embed into
Diff1

+([0, 1]).

Proof: Since Γ is non-solvable, it must contain two hyperbolic elements A,B generating a free
group. Theorem 1.3 applied to Z nA Z2 ⊂ Γ n Z2 implies that the action restricted to 〈A,Z2〉 is
topologically conjugate to an affine action with dense translation part on each connected component
I fixed by 〈A,Z2〉 and containing no point that is globally fixed by this subgroup. As B normalizes
Z2, it has to be affine in the coordinates induced by this translation part. As a consequence, the
action of Γ n Z2 is that of an affine group on each interval I as above. We thus conclude that the
action factors throughout that of a solvable group, hence it is unfaithful. �

Remark 1.14. It is not hard to extend the previous proof to show that Γ n Z2 does not embed
into the group of C1 diffeomorphisms of neither the open interval nor the circle. (Compare [26,
§4.2] and [26, §4.3], respectively.)
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Remark 1.15. All groups discussed in this section are locally indicable. We thus get different
infinite families of finitely-generated, locally-indicable groups with no faithful actions by C1 diffeo-
morphisms of the closed interval. The existence of such groups was first established in [26]; the
examples considered therein correspond to those of Theorem 1.13.

2 On affine actions

In this section, we prove Proposition 1.2. To simplify, vectors (t1, . . . , td) ∈ Rd will be denoted
horizontally, though must be viewed as vertical ones. We begin with

Proposition 2.1. Given A ∈ GLd(Q), let G be a subgroup of Z nA Qd of the form Z nA H, with
rankQ(H) = d.
(i) If (t1, ..., td) ∈ Rd is an eigenvector of the transpose AT with eigenvalue λ ∈ R+ \{1}, then
there exists a homomorphism ψ : G→ Aff+(R) with non-Abelian image defined by ψ(hi) := Tti and
ψ(a) := Mλ, where Tt and Mλ stand for the translation by an amplitude t and the multiplication by
a factor λ, respectively. This homomorphism is injective if and only if {t1, ..., td} is a Q-linearly-
independent subset of R.
(ii) Every homomorphism ψ : G → Aff+(R) with non-Abelian image is conjugate to one as those
described in (i).

Proof: The first claim of item (i) is obvious. For the other claim, notice that injectivity of ψ is
equivalent to injectivity of its restriction to H. We fix a Q-basis {b1, . . . , bd} ⊂ H of Q⊗H, and we

let a be the generator of the Z-factor of G. Assume there is an element b = bβ11 · · · b
βd
d ∈ H mapping

into the trivial translation. Then
∑

i βiti = 0, which implies that the ti’s are linearly dependent
over Q. Conversely, assume

∑
i βiti = 0 holds for certan rational numbers βi that are not all equal

to zero. Up to multiplying them by a common integer factor, we may assume that such a relation
holds with all βi’s integer. Then b := bβ11 · · · b

βd
d is a nontrivial element of H mapping into the

trivial translation under ψ.
For (ii), suppose ψ : G→ Aff+(R) is a homomorphism with non-Abelian image. Then we have

{id} ( ψ([G,G]) ⊆ [Aff+(R),Aff+(R)] = {Tt, t ∈ R}.

Fix b ∈ [G,G] such that ψ(b) is a nontrivial translation. As b ∈ H, we have that ψ(b) commutes
with every element in ψ(H). Therefore, ψ(H) is a subgroup of the group of translations.

Let t1, . . . , td in R be such that ψ(bi) = Tti . As ψ(G) is non-Abelian, we have ψ(a) = TtMλ

for certain λ 6= 1 and t ∈ R. We may actually suppose that t = 0 just by conjugating ψ by T t
λ−1

.

Then, for each i∈{1, . . . , d},

Tλti = ψ(a)ψ(bi)ψ(a)−1 = ψ(abia
−1) = ψ(b

α1,i

1 . . . b
αd,i
d ) = Tα1,it1+...+αd,itd .

Thus, λti = α1,it1+. . .+αd,itd, which implies that (t1, . . . , td) is an eigenvector of AT with eigenvalue
λ. �

Remark 2.2. The preceding proposition implies in particular that if AT has no real eigenvalue,
then there is no representation of G in Aff+(R) with non-Abelian image. As a consequence, due
to Theorem 1.3, if moreover the eigenvalues of AT all have modulus different from 1, then every
representation of G in Diff1

+([0, 1]) has Abelian image.
As a matter of example, given positive integers m,n, let A be the matrix

A = Am,n :=

(
m −n
n m

)
.
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Then the group G(m,n) := ZnA Q2 has no inyective representation into Diff1
+([0, 1]). Notice that

each of these groups G(m,n) is locally indicable. Hence, this produces still another infinite family
of finitely-generated, locally-indicable groups with no faithful action by C1 diffeomorphisms of the
closed interval. (Compare Remark 1.15.)

In view of the discussion above, the proof of Proposition 1.2 is closed by the next

Lemma 2.3. Suppose that the matrix A ∈ GLd(Q) is Q-irreducible. If λ ∈ R is an eigenvalue of
AT and v := (t1, . . . , td) ∈ Rd is such that AT v = λv, then {t1, . . . , td} is a Q-linearly-independent
subset of R.

Proof: If v is an eigenvector of AT , then the subspace v⊥ ⊆ Rd is invariant under A. Since A is
Q-irreducible, we have v⊥ ∩ Qd = {0}. Therefore, if v := (t1, . . . , td) and β1, . . . , βd in Q verify
β1t1 + · · ·+ βdtd = 0, then we have β1 = . . . = βd = 0. �

3 On continuous actions on the interval

In this section, we deal with actions by homeomorphisms. The proof below was given in [33] for
the Baumslag-Solitar group B(1, 2). As we next see, the argument can be adapted to the group G.

Proof of Lemma 1.4: The Lemma will easily follow if we show that if G acts by homeomorphisms of
[0, 1] in such a way that H admits no global fixed point on (0, 1), then the action is semiconjugate
to that of an affine group.

We let N ⊆ H be the set of elements having a fixed point inside (0, 1); as H is Abelian, N
is easily seen to be a subgroup. Since H has finite Q-rank, we have N 6= H. (This easily follows
along the lines of [25, Exercise 2.2.47] just noticing that every homeomorphism of the interval has
the same fixed points as each of its rational powers.) Therefore, there is an H-invariant infinite
measure ν on (0, 1) that is finite on compact subsets [25, Proposition 2.2.48]. We claim that ν has
no atoms, and that it is unique up to scalar multiple. Indeed, by [32], this holds whenever H/N
is not isomorphic to Z, and here we are in this case because N is AT -invariant and AT has no
eigenvalue of modulus 1.

Now, as H is normal in G, we have that a∗(ν) is also invariant by H. By uniqueness, this
implies that a∗(ν) = λν for some λ ∈ R+. More generally, for every b ∈ G, there exists λb ∈ R+

such that b∗(ν) = λbν. The map b 7→ λb is a homomorphism from G into R+. It is then easy to
check that the map ψ : G→ Aff+(R) defined by

ψ(b)(x) :=
1

λb
x+ ν

(
[1/2, b(1/2)]

)
,

is a representation. Moreover, the map F : R → R defined by F (x) := ν(1/2, x) if x > 1/2, and
F (x) := −ν(x, 1/2) for x < 1/2, semiconjugates the action of G with ψ. �

In the statement of Lemma 1.4, the semiconjugacy is not necessarily a conjugacy. This easily
follows by applying a Denjoy-like technique replacing the orbit of a single point by that of a
wandering interval. See also Theorem 4.10 below, where this procedure is carried out smoothly on
the open interval.
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4 On C1 actions on the interval

4.1 All actions are semiconjugate to affine ones

In this section, we show Proposition 1.5. Suppose for a contradiction that there is an action of
G such that the subgroup H acts nontrivially on (0, 1) but having a fixed point inside. For each
x ∈ (0, 1) which is not fixed by H, let us denote by Ix the maximal interval containing x such that
H has no fixed point inside. Since G has no global fixed point in (0, 1) and H is normal in G, we
must have an(Ix) ∩ Ix = ∅ for all n 6= 0. In particular, Ix is contained in (0, 1). Moreover, a
has no fixed point in (0, 1), and up to changing it by its inverse, we may suppose that a(z) > z for
all z ∈ (0, 1).

The rough idea now is, for a point x not fixed by H as above, to apply a−1 iteratively at x
and examine the behavior of an appropriately defined displacement vector (see (2) below). Our
first lemmata (4.2 to 4.6) build the groundwork needed to show that the direction of this vector
nearly converges along a subsequence (Lemma 4.7). That A is hyperbolic them implies that,
along this subsequence, the magnitude of the vector is uniformly expanded (Lemma 4.9), giving a
contradiction.

To implement the strategy above, we first recall a useful tool that arises in this context, namely,
there is an H-invariant infinite measure µx supported on Ix which is finite on compact subsets. This
measure is not unique, but independently of the choice, we can define the translation homomorphism
τµx : H → R by τµx(h) := µx([z, h(z))) (here and in all what follows, we use the convention
µ([y, z)) := −µ((z, y]) for z < y). The value of this morphism is independent of z ∈ Ix, and its
kernel Kx, coincides with the set of elements of H having fixed points inside Ix. See [25, Section
2.2.5] for all of this.

From now on, we fix a Q-basis {b1, . . . , bd} ⊂ H of Q ⊗ H. Although unnatural, this choice
equips R⊗H with an inner product, which yields to the following crucial notion.

Definition 4.1. For every Ix as above, we define the translation vector ~τµx ∈ Rd as the unit vector
pointing in the direction (t1, . . . , td), where ti := µx([z, bi(z))).

We have

Lemma 4.2. If we identify each b = bβ11 · · · b
βd
d ∈ H with the vector (β1, . . . , βd) ∈ R ⊗ H, then

~τµx ∈ Rd is orthogonal to the hyperplane R⊗Kx.

Proof: For b = bβ11 · · · b
βd
d ∈ H we have that τµx(b) =

∑
i βiµx([z, bi(z))) equals zero if and only if

the vector (β1, . . . , βd) is ortoghonal to ~τµx . �

In the sequel, we will denote ~τµx simply by ~τx. We have

Lemma 4.3. For each x ∈ (0, 1), we have Ka−1(x) = A−1Kx. Moreover, the directions of ~τa−1(x)

and AT~τx coincide.

Proof: A vector v = (β1, ..., βd) ∈ R ⊗ H gives a positive (resp., negative) value under τµa−1(x)
if

and only if
bβ11 · · · b

βd
d (a−1(z)) > a−1(z)

(resp., bβ11 · · · b
βd
d (a−1(z)) < a−1(z)) holds for every z ∈ Ix, that is

a−1b
α1,1β1+···+α1,dβd
1 · · · bαd,1β1+···+αd,dβdd (z) > a−1(z)
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(resp., a−1b
α1,1β1+···+α1,dβd
1 · · · bαd,1β1+···+αd,dβdd (z) < a−1(z)). This happens if and only if

b
α1,1β1+···+α1,dβd
1 · · · bαd,1β1+···+αd,dβdd (z) > z

(resp., b
α1,1β1+···+α1,dβd
1 · · · bαd,1β1+···+αd,dβdd (z) < z). This directly yields the first assertion of the

lemma. The second one is an easy consequence. Indeed, ~τa−1x generates the subspace

(R⊗Ka−1x)⊥ = (A−1(R⊗Kx))⊥ = AT (R⊗Kx)⊥,

and the last subspace is generated by the vector AT~τx. �

We now state our main tool to deal with C1 diffeomorphisms. Roughly, it says that diffeo-
morphisms that are close-enough to the identity in the C1 topology behave like translations under
composition. For each δ > 0, we denote Uδ(id) the neighborhood of the identity in Diff1

+([0, 1])
given by

Uδ(id) :=
{
f ∈ Diff1

+([0, 1]) : sup
z∈[0,1]

∣∣Df(z)− 1
∣∣ < δ

}
.

Proposition 4.4 ([4]). For each η > 0 and all k ∈ N, there exists a neighborhood U of the identity
in Diff1

+([0, 1]) such that for all f1, . . . , fk in U , all ε1, . . . , εk in {−1, 1} and all x ∈ [0, 1], we have∣∣∣[f εkk ◦ . . . ◦ f ε11 (x)− x]−
∑
i

εi(fi(x)− x)
∣∣∣ ≤ ηmax

j

{
|fj(x)− x|

}
.

Proof: First of all, observe that if g ∈ Diff1
+([0, 1]) satisfies |Dg(z) − 1| < λ for all z ∈ [0, 1], then

for all x, y, ∣∣(g(x)− x)− (g(y)− y)
∣∣ < λ|x− y|.

Next, notice that for every f ∈ Uδ(id) and all x ∈ [0, 1], there exists y ∈ [0, 1] such that∣∣(f−1
i (x)−x)−(x−fi(x))

∣∣ =
∣∣(fi(x)−x)−(fi(f

−1
i (x))−f−1

i (x))
∣∣ =

∣∣Dfi(y)−1
∣∣·∣∣x−f−1

i (x)
∣∣ ≤ δ|x−f−1

i (x)|.

Using this, it is not hard to see that we may assume that εi = 1 for all i.
We proceed by induction on k. The case k = 1 is trivial. Suppose the lemma holds up to k− 1,

and choose δ > 0 so that the lemma applies to any k − 1 diffeomorphisms in the neighborhood
U = Uδ(id) for the constant η/2. We may suppose δ is small enough to verify δ(k−1 +η/2) < η/2.
Now take f1, . . . , fk in Uδ(id) and x ∈ [0, 1]. Then the value of the expression

∣∣∣fk ◦ . . . ◦ f1(x)− x−
k∑
i=1

(fi(x)− x)
∣∣∣

is smaller than or equal to

∣∣∣fk ◦ . . . ◦ f1(x)− fk−1 ◦ . . . ◦ f1(x)− (fk(x)− x)
∣∣+
∣∣fk−1 ◦ . . . ◦ f1(x)− x−

k−1∑
i=1

(fi(x)− x)
∣∣∣.

Now notice that, by the inductive hypothesis, the second term in the sum above is bounded from
above by η/2 maxj |fj(x)− x|. Moreover, the observation at the beginning of the proof and the
inductive hypothesis yield

∣∣fk(fk−1◦. . .◦f1(x))−fk−1◦. . .◦f1(x)−(fk(x)−x)
∣∣ ≤ δ∣∣fk−1◦. . .◦f1(x)−x

∣∣ ≤ δ( k−1∑
i=1

|fi(x)−x|+ε
)
,
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with ε < η/2 maxj |fj(x) − x|. By the choice of δ, the last expression is bounded from above by
η/2 maxj |fj(x)− x|, thus finishing the proof. �

We next deduce three consequences from this proposition.

Lemma 4.5. Given η > 0, there exists δ > 0 satisfying the following: if f ∈ Diff1
+([0, 1]) and q ∈ N

are such that f1/q ∈ Uδ(id), then for all x ∈ [0, 1],∣∣(f(x)− x)− q(f1/q(x)− x)
∣∣ ≤ η |f1/q(x)− x|.

In particular,
|f(x)− x|
q + η

≤ |f1/q(x)− x| ≤ |f(x)− x|
q − η

.

Proof: This directly follows from the proposition by letting k = q and f1 = . . . = fk = f1/q.
Details are left to the reader. �

Notice that the lemma above does not state that if f is close to the identity, then its roots
(whenever they exist) remain close to the identity. Indeed, this is known to be false in general.
Nevertheless, as we will see along the proof of the lemma below, this turns to be partially true in
the group G. For the statement, notice that the set of global fixed points of H accumulate at the
origin. Hence, given an element b ∈ H, for each δ > 0, there is σ > 0 which is fixed by H and
such that b restricted to [0, σ] belongs to the Uδ(id)-neighborhood of the identity in Diff1

+([0, σ])
(the latter group is being identified with Diff1

+([0, 1]) just by rescaling the interval). Let us hence
consider the displacement vector 4(x) defined by

4(x) :=
(
b1(x)− x, . . . , bd(x)− x

)
∈ Rd, (2)

and let us denote by ‖4(x)‖ its max norm. Notice that ‖4(x)‖ ≤ 1 for all x ∈ [0, 1].

Lemma 4.6. For all r > 0, there exists σ > 0 such that

4(a−1(x)) = Da−1(0)AT4(x) + ε(x) for all x ∈ (0, σ),

and
4(a(x)) = Da(1) (AT )−14(x) + ε̂(x) for all x ∈ (1− σ, 1),

where ‖ε(x)‖ ≤ r‖4(x)‖ and ‖ε̂(x)‖ ≤ r‖4(x)‖.

Proof: Both assertions being analogous, we will prove only the first one. Let us write αi,j := pi,j/qi,j ,

with (pi,j , qi,j) = 1 and qi,j > 0. Then each b
1/qi,j
j is an element of H. Indeed, letting m = mi,j and

n = ni,j be integers such that mpi,j + nqi,j = 1, we have b
1/qi,j
j = (b

pi,j/qi,j
j )m(bj)

n.
Let k := maxi{

∑
j |pj,i|}, and let η > 0 be small enough so that

η max
i

 D

minj qj,i − η

(
1 +

∑
j

|αj,i|
)

+
∑
j

|αj,i|

 ≤ r,
where D = maxzDa

−1(z). Let U be a neighborhood of the identity in Diff1
+([0, 1]) for which both

Proposition 4.4 and Lemma 4.5 hold simultaneously, and let σ > 0 be fixed by H such that the
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restrictions to [0, σ] of all the b
1/qj,i
j belong to U and |Da−1(z)−Da−1(0)| ≤ η holds for all z ∈ [0, σ].

Then∣∣∣(abia−1(x)− x)−
∑
j

αj,i(bj(x)− x)
∣∣∣ =

∣∣∣(bα1,i

1 ◦ · · · ◦ bαd,i

d (x)− x
)
−
∑
j

αj,i(bj(x)− x)
∣∣∣

=
∣∣∣((b1/q1,i1 )p1,i ◦ · · · ◦ (b

1/qd,i
d )pd,i(x)− x

)
−
∑
j

pj,i
qj,i

(bj(x)− x)
∣∣∣

≤
∣∣∣((b1/q1,i1 )p1,i ◦ · · · ◦ (b

1/qd,i
d )pd,i(x)− x

)
−
∑
j

pj,i(b
1/qj,i
j (x)− x)

∣∣∣
+
∑
j

|pj,i|
∣∣∣(b1/qj,ij (x)− x)− 1

qj,i
(bj(x)− x)

∣∣∣
≤ ηmax

j
|b1/qj,ij (x)− x|+ ηmax

j
|b1/qj,ij (x)− x|

∑
j

|pj,i|
|qj,i|

≤ η

minj qj,i − η

1 +
∑
j

|αj,i|

max
j
|bj(x)− x|.

The i-th entry in the vector 4(a−1(x)) is

bia
−1(x)− a−1(x) = a−1abia

−1(x)− a−1(x) = Da−1(zi)
(
abia

−1(x)− x
)
,

where the last equality holds for a certain point zi ∈ Ix. By the estimate above, for x ∈ (0, σ), this
expression equals

Da−1(zi)
∑
j

αj,i
(
bj(x)− x

)
up to an error ε̃i(x) satisfying

|ε̃i(x)| ≤ Da−1(zi)
η

minj qj,i − η

1 +
∑
j

|αj,i|

max
j
|bj(x)− x|.

Moreover, by the choice of σ, the value of Da−1(zi)
∑

j αj,i(bj(x)− x) equals

Da−1(0)
∑
j

αj,i(bj(x)− x)

up to an error bounded from above by η
∣∣∑

j αj,i(bj(x) − x)
∣∣. Summarizing, bia

−1(x) − a−1(x)

coincides with Da−1(0)
∑

j αj,i
(
bj(x)− x

)
up to an error εi(x) satisfying

|εi(x)| ≤ η

 D

minj qj,i − η

(
1 +

∑
j

|αj,i|
)

+
∑
j

|αj,i|

max
j
|bj(x)− x| ≤ r‖4(x)‖.

Since this holds for every i ∈ {1, . . . , d}, this finishes the proof. �

Before stating our third lemma, we observe that Lemma 4.3 and the compactness of the unit
sphere Sd−1 ⊂ Rd imply that for each point x0 not fixed by H, the vectors ~τa−n(x0) (resp., ~τan(x0))

accumulate at some ~τ ∈ Sd (resp., ~τ∗) as n → ∞. For each n ∈ Z, we let xn := a−n(x0), and we
choose a sequence of positive integers nk such that ~τxnk → ~τ and ~τx−nk → ~τ∗ as k →∞.
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Lemma 4.7. For every η > 0, there exists K such that k ≥ K implies

4(xnk)

‖4(xnk)‖
= ~τ + ε(k) and

4(x−nk)

‖4(x−nk)‖
= ~τ∗ + ε∗(k),

where ‖ε(k)‖ ≤ η and ‖ε∗(k)‖ ≤ η.

Proof: Up to passing to a subsequence if necessary, there is b∗ ∈ {b1, . . . , bd} such that for all k,

|b∗(xnk)− xnk | ≥ max
i

{
|bi(xnk)− xnk |

}
.

Then the functions ψk : H → R defined by

ψk(b) =
b(xnk)− xnk
b∗(xnk)− xnk

converge as k → ∞ to a homomorphism ψ : H → R which is normalized, in the sense that
maxi |ψ(bi)| = 1. Indeed, this is the content of the Thurston’s stability theorem [36] (which in its
turn can be easily deduced from Proposition 4.4).

The vectors ~τk and ~τ naturally induce normalized homomorphisms from H into R, denoted ~τk
and ~τ as well. For these homomorphisms and any b, c in H, the inequality ~τ(b) < ~τ(c) implies
~τk(b) < ~τk(c) for k larger than a certain K0, which implies b(z) < c(z) for all z ∈ Ixnk and all
k > K0. By evaluating at z = xnk , this yields ψk(b) < ψk(c) for k > K0. Passing to the limit,
we finally obtain ψ(b) ≤ ψ(c). As a consequence, there must exist a constant λ for which ~τ = λψ.
Nevertheless, since both homomorphisms are normalized (and point in the same direction), we must
have λ = 1, which yields the convergence of 4(xnk)/‖4(xnk)‖ towards ~τ . The second convergence
is proved in an analogous way. �

Henceforth, and in many other parts of this work, we will use a trick due to Muller and Tsuboi
that allows reducing to the case where all group elements are tangent to the identity at the end-
points. This is achieved after conjugacy by an appropiate homeomorphism that is smooth at the
interior and makes flat the germs at the enpoints. In concrete terms, we have:

Lemma 4.8 ([22, 38]). Let us consider the germ at the origin of the local (non-differentiable)
homeomorphism ϕ(x) := sgn(x) exp(−1/|x|). Then for every germ of C1 diffeomorphism f (resp.
vector field X ) at the origin, the germ of the conjugate ϕ−1 ◦ f ◦ ϕ (resp., push-forward ϕ∗(X )) is
differentiable and flat in a neighborhood of the origin.

We should stress, however, that although this lemma simplifies many computations, in what
follows it may avoided just noticing that, as Da is continuous, the element a behaves like an affine
map close to each endpoint.

Recall that Rd decomposes as Es ⊕ Eu, where Es (resp. Eu) stands for the stable (unstable)
subspace of AT . We denote by πs and πu the projections onto Es and Eu, respectively. We let
‖ · ‖∗ be the natural norm on Rd associated to this direct-sum structure, namely,

‖v‖∗ := max
{
‖πs(v)‖, ‖πu(v)‖

}
.

Lemma 4.9. For any neighborhood V ⊂ Sd of Eu ∩Sd∗ in the unit sphere Sd∗ ⊂ Rd (with the norm
‖ · ‖∗), there is σ > 0 such that for all x ∈ (0, σ) not fixed by H,

4(x)

‖4(x)‖∗
∈ V =⇒ 4(a−1(x))

‖4(a−1(x))‖∗
∈ V.
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Moreover, if V is small enough, then there exists κ > 1 such that

4(x)

‖4(x)‖∗
∈ V =⇒ ‖4(a−1x)‖∗ ≥ κ‖4(x)‖∗.

Proof: For the first statement, we need to show that for every prescribed positive ε < 1, for points
x close to the origin and not fixed by H, we have

‖πs4(a−1(x))‖
‖πu4(a−1(x))‖

< ε provided
‖πs4(x)‖
‖πs4(x)‖

< ε.

Let λ > 1 (resp., λ′ < 1) be such that the norm of nonzero vectors in Eu (resp., Es) are
expanded by at least λ (resp., contracted by at least λ′) under the action of AT . Choose r < λ/2
small enough so that

(λ′ + r)ε

λ− 2r
+

r

λ− 2r
< ε,

and consider a point x not fixed by H lying in the interval (0, σ) given by Lemma 4.6. Then from

‖πs4(a−1(x))‖ ≤ ‖πsAT4(x)‖+r‖4(x)‖ ≤ λ′‖πs4(x)‖+r‖4(x)‖ ≤ (λ′+r)‖πs4(x)‖+r‖πu4(x)‖,

‖πu4(a−1(x))‖ ≥ ‖πuAT4(x)‖ − r‖4(x)‖ ≥ λ‖πu4(x)‖ − r‖4(x)‖ ≥ (λ− 2r)‖πu4(x)‖,

we obtain
‖πs4(a−1(x))‖
‖πu4(a−1(x))‖

≤ (λ′ + r)ε

λ− 2r
+

r

λ− 2r
< ε,

as desired.
Moreover, by the estimates above,

‖4(a−1(x))‖∗ ≥ ‖πu4(a−1(x))‖ ≥ (λ− 2r)‖πu4(x)‖ = (λ− 2r)‖4(x)‖∗,

which yields the second statement for r small enough. �

Now we can easily finish the proof of Proposition 1.5. To do this, choose a point x0 ∈ (0, 1)
that is not fixed by H. We need to consider two cases:

Case 1: ~τx0 /∈ Es

In this case, we first observe that Lemma 4.3 implies that any accumulation point of ~τan(x0) (in

particular, ~τ) must belong to Eu. Let V be a small neighborhood around Eu ∩ Sd∗ in Sd∗ so that
both statements of Lemma 4.9 hold. Then, by Lemma 4.7, the vector 4(xk)/‖4(xk)‖∗ belongs to
V starting from a certain k = K. This allows applying Lemma 4.9 inductively, thus showing that
for all n ≥ 0,

1 ≥ ‖4(xn+k)‖∗ ≥ κn‖4(xk)‖∗.

Letting n go to infinity, this yields a contradiction.

Case 2: ~τx0 ∈ Es.

In this case, Lemma 4.3 yields ~τ∗ ∈ Es. We then proceed as above but on a neighborhood of 1
working with a instead of a−1 and with (AT )−1 instead of AT . Details are left to the reader. (This
requires for instance an analog of Lemma 4.9 for the dynamics close to 1.)
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4.2 Minimality of affine-like actions

In this section, we begin by showing Proposition 1.6. Let φ : G→ Diff1
+([0, 1]) be a representation

with non-Abelian image. We know from Proposition 1.5 that φ is semiconjugate to a representation
ψ : G → Aff+([0, 1]) in the affine group. The elements in the commutator subgroup [ψ(G), ψ(G)]
are translations. In what follows, we will assume that the right endpoint is topologically attracting
for ψ(a), hence ψ(a) is conjugate to an homothety x→ λx with λ > 1 (the other case is analogous).
Up to changing a by a positive power, we may assume that λ ≥ 2. We fix b ∈H such that ψ(b)
is a non-trivial translation. Up to changing b by its inverse and conjugating ψ by an appropriate
homothety, we may assume that ψ(b) = T1. We consider a finite system of generators of G that
contains both a and b.

Suppose for a contradiction that φ(G) does not act minimally. Then there is an interval I that
is wandering for the action of [φ(G), φ(G)]. As before, we may assume that Dφ(c)(1) = 1 for all
c ∈ G. Fix ε > 0 such that (1− ε)3 > 1/2, and let δ > 0 be such that

1− ε ≤ Dφ(c)(x) ≤ 1 + ε for each c ∈ {a±1, b} and all x ∈ [1− δ, 1]. (3)

Clearly, we may assume that I ⊂ [1− δ, 1].
Notice that ψ(a−kbak) = Tλ−k for all k ∈ Z. We consider the following family of translations

h(εi) := (a−nbεnan) · · · (a−2bε2a2)(a−1bε1a),

where (εi) = (ε1, . . . , εn) ∈ {0, 1}n. These satisfy the following properties:

(i) We have that (εi) 6= (ε̃i) implies h(εi) 6= h(ε̃i): this easily follows from that λ ≥ 2.

(ii) We have φ(h(εi))(1− δ) ≥ 1− δ: this follows from that φ(b) attracts towards 1 and that εi ≥ 0
for all i.

(iii) The element h(εi) = a−n(bεna) · · · (bε2a)(bε1a) belongs to the ball of radius 3n in G. In
particular, due to (3) and the preceding claim, we have Dφ(b(εi))(x) ≥ (1−ε)3n for all x ∈ [1−δ, 1].

Since for each c ∈ G there exists xI ∈ I for which |c(I)| = Dc(xI)|I| (where | · | stands for the
length of the corresponding interval), putting together the assertions above we conclude

1 ≥
∑
(εi)

∣∣h(εi)(I)
∣∣ ≥ 2n(1− ε)3n|I| > 1,

where the last inequality holds for n large enough. This contradiction finishes the proof of Propo-
sition 1.6.

It should be emphasized that Proposition 1.6 is no longer true for C1 (even real-analytic) actions
on the real line (equivalently, on the open interval). Indeed, this issue was indirectly adressed by
Ghys and Sergiescu in [17, section III], as we next state and explain.

Theorem 4.10. ([17]). The Baumslag-Solitar group BS(1, 2) :=
〈
a, b | aba−1 = b2

〉
embeds into

Diff1
+(R) via an action that is semiconjugate, but not conjugate, to the canonical affine action and

such that the element a∈B(1, 2) acts with two fixed points.

Recall that BS(1, 2) is isomorphic to the group of order-preserving affine bijections of Q2,
where Q2 is the group of diadic rationals. Hence, every element in BS(1, 2) may be though as a
pair

(
2n, p2q

)
, which identifies to the affine map(

2n,
p

2q

)
: x→ 2nx+

p

2q
.
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Notice that Q2 corresponds to the subgroup of translations inside BS(1, 2).
Next, following [17], we consider a homeomorphism f : R→ R satisfying the following proper-

ties:

(I) For every x ∈ R, we have f(x+ 1) = f(x) + 2.

(II) f(0) = 0.

Lemma 4.11 ([17]). The map θf : p
2q ∈ Q2 → f−qTpf

q ∈ Homeo+(R) is a well-defined homomor-
phism.

Lemma 4.12 ([17]). The map
(
2n, p2q

)
∈ BS(1, 2)→ θf ( p2q ) ◦ fn ∈ Homeo+(R) is a group homo-

morphism.

The homomorphism provided by the last lemma above will still be denoted by θf . Notice that
θf (a) = f .

Next, for 1 ≤ r ≤ ∞, ω, we impose a third condition on f :

(IIIr) The map f is of class Cr.

We have

Lemma 4.13 ([17]). The image θf (BS(1, 2)) is a subgroup of Diffr+(R).

We end with

Lemma 4.14 ([17]). Suppose that the function f has at least two fixed points. Then θf (BS(1, 2))
has an exceptional minimal set (i.e. a minimal invariant closed set locally homeomorphic to the
Cantor set).

To close this section, we point out that a similar construction can be carried out for all Baumslag-
Solitar’s groups BS(1, n) :=

〈
a, b | bab−1 = an

〉
. Roughly, we just need to replace condition (I)

by:

(I)n For every x ∈ R, we have f(x+ 1) = f(x+ n).

4.3 Rigidity of multipliers

We start by dealing with the Baumslag-Solitar group BS(1, 2). Let us consider a faithful action of
this group by C1 diffeomorphisms of the closed interval. We known that such an action must be
topologically conjugate to an affine action, hence to the standard affine action given by a : x 7→ 2x
and b : x 7→ x + 1. (It is not hard to check that all faithful affine actions of B(1, 2) are conjugate
inside Aff(R).) Let ϕ : (0, 1)→ R denote the topological conjugacy. Our goal is to show

Proposition 4.15. The derivative of a at the interior fixed point equals 2.

Proof: For the proof, we let I := ϕ−1([0, 1]). Notice that for all positive integers n,N , the intervals

(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I), εi ∈ {0, 1},

have pairwise disjoint interiors. Indeed, these intervals are mapped by ϕ into the dyadic intervals
of length 1/2n contained in [N,N + 1]. For simplicity, we assume below that both a and b have
derivative 1 at the endpoints. (As before, this may be performed via the Muller-Tsuboi trick; c.f.
Lemma 4.8).
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Assume first that Da(x0) < 2, where x0 is the interior fixed point of a. Then there are C > 0
and ε > 0 such that for all n ≥ 1, ∣∣a−n(I)

∣∣ ≥ C(1

2
+ ε
)n
|I|.

Fix δ > 0 such that (
1− δ

)3(1

2
+ ε
)
> 1/2. (4)

Let σ > 0 be small enough so that

Da(x) ≥ 1− δ, Da−1(x) ≥ 1− δ and Db(x) ≥ 1− δ for all x ∈ [1− σ, 1].

Finally, let N ≥ 1 be such that bN (x0) ≥ 1− σ. Similarly to the proof of Proposition 1.6, for such
N and all n ≥ 1, we have for all choices εi ∈ {0, 1},∣∣(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I)

∣∣ ≥ (1− δ)3nDC
(1

2
+ ε
)n∣∣I∣∣,

where D := minxDb
N (x). As there are 2n of these intervals, we have

1 ≥ 2n(1− δ)3nDC
(1

2
+ ε
)n
|I|,

which is impossible for a large-enough n due to (4).
Assume next that Da(x0) > 2. Then there are C ′ > 0 and ε′ > 0 such that for all n ≥ 1,∣∣a−n(I)

∣∣ ≤ C ′(1

2
− ε′

)n
.

Fix δ′ > 0 such that (
1 + δ′

)3(1

2
− ε′

)
< 1/2. (5)

Let σ′ > 0 be small enough so that

Da(x) ≤ 1 + δ, Da−1(x) ≤ 1 + δ and Db(x) ≤ 1 + δ for all x ∈ [1− σ′, 1].

Finally, let N ′ ≥ 1 be such that bN
′
(x0) ≥ 1 − σ′. Proceeding as before, we see that for such N ′

and all n ≥ 1, we have for all choices εi ∈ {0, 1},∣∣(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I)
∣∣ ≤ (1 + δ′)3nD′C ′

(1

2
− ε′

)n∣∣I∣∣,
where D′ := maxxDb

N (x). However, the involved intervals cover IN ′ := bN
′
(I) = ϕ−1

(
[N ′, N ′+1]

)
.

Thus,

|IN ′ | ≤ 2n(1 + δ′)3nD′C ′
(1

2
− ε′

)n∣∣I∣∣,
which is again impossible for a large-enough n due to (5). �

Remark 4.16. The action of the Baumslag-Solitar group by C1 diffeomorphisms of the real line
constructed in the preceding section can be easily modified into a minimal one for which the
derivative of a at the fixed point equals 1. Roughly, we just need to ask for the map f along
the construction to have a single fixed point, with derivative 1 at this point. This shows that
Theorem 1.7 is no longer true for actions by C1 diffeomorphisms of the open interval.
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The preceding proposition corresponds to a particular case of Theorem 1.7 but illustrates the
technique pretty well. Below we give the proof of the general case along the same ideas. First, as A
is supposed to be hyperbolic, we know that the action of G is topologically conjugate to an affine
one. Moreover, Proposition 2.1 completely describes such an action: up to a topological conjugacy
ϕ, it is given by correspondences a 7→ Mλ and hi 7→ Tti , where (t1, . . . , td) is an eigenvector of A
with eigenvalue λ. Up to conjugacy in Aff(R), we may assume that one of the t′is equals 1, hence
b := bi is sent into Tt := T1.

Next, we proceed as above, but with a little care. Notice that changing a by an integer power
if necessary, we may assume that λ ≥ 2.

Assume first that Da(x0) < λ, where x0 is the interior fixed point of a. Then there are C > 0
and ε > 0 such that for all n ≥ 1, ∣∣a−n(I)

∣∣ ≥ C( 1

λ
+ ε
)n
.

Fix δ > 0 such that (1 − δ)3( 1
λ + ε) > 1

λ . Let σ > 0 be small so that Da(x) ≥ 1 − δ,
Da−1(x) ≥ 1 − δ and Db(x) ≥ 1 − δ hold for all x ∈ [1 − σ, 1]. Finally, let N ≥ 1 be such
that bN (x0) ≥ 1 − σ. Given n ≥ 1, we consider for all choices εi ∈ {0, 1, . . . , [λ]}, the intervals
(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I), where I is the preimage of [0, 1] under the topological
conjugacy into the affine action. As before, we have for each such choice∣∣(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I)

∣∣ ≥ (1− δ)3nDC
( 1

λ
+ ε
)n∣∣I∣∣,

where D := minxDb
N (x). These intervals do not necessarily have pairwise disjoint interiors, but

their union covers I with multiplicity at most 2. As there are
(
[λ] + 1

)n
of these intervals, we have

2 ≥
(
[λ] + 1

)n
(1− δ)3nDC

( 1

λ
+ ε
)n
|I|,

which is impossible for large enough n.
Assume next that Da(x0) > λ. Then there are C ′ > 0 and ε′ > 0 such that for all n ≥ 1,∣∣a−n(I)

∣∣ ≤ C ′( 1

λ
− ε′

)n
.

Fix δ′ > 0 such that (1 + δ′)3( 1
λ − ε

′)< 1
λ . Let σ′ > 0 be small enough so that Da(x) ≤ 1 + δ′,

Da−1(x) ≤ 1 + δ′ and Db(x)≤ 1 + δ′ hold for all x ∈ [1 − σ′, 1]. Finally, let N ′ ≥ 1 be such that
bN
′
(x0) ≥ 1− σ′. As before, given n ≥ 1, for all choices εi ∈ {0, 1, . . . , [λ]}, we have∣∣(a−nbεnan) · · · (a−2bε2a2)(a−1bε1a)bN

′
a−n(I)

∣∣ ≤ (1 + δ′)3nD′C ′
( 1

λ
− ε′

)n∣∣I∣∣,
where D′ := maxxDb

N (x). These intervals cover IN ′ := bN
′
(I) for each n ≥ 1. As there are

([λ] + 1)n of these intervals, we have

|IN ′ | ≤
(
[λ] + 1

)n
(1 + δ′)3nDC

( 1

λ
− ε′

)n
|I|.

Although this is not enough to conclude, we notice that we may replace a by ak along the preceding
computations, now yielding

|IN ′ | ≤
(
[λk] + 1

)n
(1 + δ′)3nDC

( 1

λ
− ε′

)kn
|I|.
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Choosing k large enough so that (
[λk] + 1

)( 1

λ
− ε′

)k
(1 + δ′)3 < 1

and then letting n go to infinity, this gives the desired contradiction.
We have hence showed that Da(x0) = λ. To show that the derivative of akb at the interior

fixed point equals λk for each k 6= 0 and all b ∈ H, just notice that the associated affine action can
be conjugate in Aff(R) so that akb is mapped into Tλk . Knowing this, we may proceed in the very
same way as above.

4.4 On the smoothness of conjugacies

As we announced in the Introduction, actions by C1 diffeomorphisms are rarely rigid in what
concerns the regularity of conjugacies. In our context, this is actually never the case, as it is shown
by the next

Proposition 4.17. Let G be a group of the form ZnAH, where A ∈ GLd(Q) and rankQ(H) = d.
Then every faithful action of G by C1 diffeomorphisms of [0, 1] can be approximated in the C1

topology by actions by C1 diffeomorphisms that are topologically conjugate to it but for which no
Lipschitz conjugacy exists.

Proof: This follows by an standard application of the Anosov-Katok method (see [14, 15] for a
general panorama on this).

Start with G viewed as a group of C1 diffeomorphisms of [0, 1]. Fix two points x0, x1 in (0, 1),
and denote by a the generator of the Z-factor of G and by {b1, . . . , bd} a Q-basis of H. Consider a
sequence of diffeomorphisms ϕk of [0, 1] such that for all c ∈ {a±1, b±1i }, where i ∈ {1, . . . , d}, we
have for ϕ̃k := ϕ1 ◦ · · · ◦ ϕk:

(i)
∥∥ϕ̃k+1 − ϕ̃k

∥∥
C0 ≤ 1

2k
,

(ii)
∥∥ϕ̃k+1 ◦ c ◦ (ϕ̃k+1)

−1 − ϕ̃k ◦ c ◦ (ϕ̃k)
−1∥∥

C1 ≤ 1
2k

,

(iii) x0, x1 are both fixed by ϕk,

(iv) Dϕk(x0) > 2k minyDϕ̃k−1(y), and if we denote by Ik the connected component of the set{
x | Dϕk(x) > 2k minyDϕ̃k−1(y)

}
containing x0, then the support of ϕk+1 has measure < |Ik|/2.

This may be easily achieved inductively by making ϕk+1 almost commute with the action of G
conjugate by ϕ̃k along a very small neighborhood of a large but finite part of the orbit of x0.

By (i), we have that the sequence (ϕ̃k) converges to a homeomorphism ϕ̃∞. By (ii), the sequence
of the actions conjugated by ϕ̃k converge in the C1 topology to the action conjugated by ϕ̃∞. Due
to (iii), each ϕ̃k fixes x0 and x1, hence the same holds for ϕ̃∞. As conjugacies to affine groups with
dense translation subgroup are unique up to right composition with an affine map, we deduce that
ϕ̃∞ is the unique conjugacy between G and ϕ̃∞Gϕ̃

−1
∞ fixing these two points. Finally, using (iv),

it is not hard to see that the derivative of ϕ̃k is larger than 2k on certain intervals that remain
disjoint from the supports of ϕk+1, ϕk+2, . . . As a consequence, the limit homeomorphism ϕ̃∞ is not
Lipschitz. Because of the uniqueness up to affine transformations previously discussed, this implies
that G and ϕ̃∞Gϕ̃

−1
∞ cannot be conjugated by any Lipschitz homeomorphism. �

Next, we deal with the Cr case, where r ≥ 2.
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Proposition 4.18. Let G be a group of the form ZnAH, where A ∈ GLd(Q) has no eigenvalue of
norm 1 and rankQ(H) = d. Then for all r ≥ 2, every faithful action of G by Cr diffeomorphisms
of [0, 1] with no global fixed point in (0, 1) is conjugate to an affine action by a homeomorphism
that restricted to (0, 1) is a Cr diffeomorphism.

Proof: We know from Theorem 1.3 that the action is conjugate to an affine action via a homeo-
morphism ϕ. The image of H is a subgroup of the group of translations which is necessarily dense;
otherwise, H would have rank 1 and A2 would stabilize it pointwise, thus contradicting hyperbol-
icity. As g is assumed to be Cr, r ≥ 2, and has no fixed point in (0, 1), Szekeres’ theorem implies
that the restrictions of g to [0, 1) and (0, 1] are the time-one map of the flows of vector fields X−
and X+, respectively, that are C1 on their domains and Cr−1 at the interior. Futhermore, Kopell’s
lemma implies that the C1 centralizer of g is contained in the intersection of the flows of X− and
X+. Therefore, the flows coincide for a dense subset of times, hence X− = X+ on (0, 1). We denote
this vector field by X and we call it the Szekeres vector field associated to b. (See [25, §4.1.3] for
the details.)

The homeomorphism ϕ must send this flow into that of the translations. Since X is of class
Cr−1 on (0, 1), we have that ϕ is a Cr−1 diffeomorphism of (0, 1). To see that ϕ is actually a Cr

diffeomorphism, we use Theorem 1.7, which says that the interior fixed point x0 of the element
a is hyperbolic. Indeed, this implies that ϕ is a C1 diffeomorphism that conjugates two germs
of hyperbolic diffeomorphisms. By a well-known application of (the sharp version of) Sternberg’s
linearization theorem, such a diffeomorphism has to be of class Cr in a neighborhood of x0 (see [25,
Corollary 3.6.3]). Since the action is minimal on (0, 1) due to Proposition 1.6, this easily implies
that ϕ is of class Cr on the whole open interval. �

5 Examples involving non-hyperbolic matrices

We next consider the situation where A ∈ GLd(Q) has some eigenvalues of modulus = 1 and some
others of modulus 6= 1. Our goal is to prove Theorem 1.8, according to which the group Z nA Qd

has an action by C1 diffeomorphisms of the closed interval that is not semiconjugate to an affine
action provided A is irreducible. In particular, this is the case for the matrix

A :=


0 0 0 −1
1 0 0 −4
0 1 0 −4
0 0 1 −4

 ∈ SL4(Z).

Indeed, A has characteristic polynomial p(x) = x4 + 4x3 + 4x2 + 4x + 1 = p1(x)p2(x), where
p1(x) := x2 + (2 +

√
2)x + 1 and p2(x) := x2 + (2 −

√
2)x + 1. Notice that p(x) has no rational

root, neither a decomposition into two polynomial of rational coefficients of degree two; hence, it
is irreducible over Q. Moreover, the roots λ and 1/λ of p1 are real numbers of modulus different
from 1, while the roots w, w of p2 are complex numbers of modulus 1, where

w =

√
2− 2 + i

√
4
√

2− 2

2
, λ =

−
√

2− 2 +
√

4
√

2 + 2

2
.

Given anyA ∈ GLd(Q), we begin by constructing an action ofG := ZnAQd by homeomorphisms
of the interval that is not semiconjugate to an affine action. To do this, we consider a decomposition
[0, 1] =

⋃
k∈Z Ik, where the Ik’s are open intervals disposed on [0, 1] in an ordered way and such
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that the right endpoint of Ik coincides with the left endpoint of Ik+1, for all k ∈ Z. Let f be a
homeomorphism of [0, 1] sending each Ik into Ik+1. For each (t1, . . . , td)∈Qd and k ∈ Z, denote

(t1,k, . . . , td,k) := Ak(t1, . . . , td).

Let ξt be a nontrivial topological flow on I0. Next, fix (s1, . . . , sd)∈Rd, and for each (t1, . . . , td) ∈ Qd,
define g := g(t1,...,td) on I0 by g|I0 := ξ

∑
i siti . Extend g to the whole interval by letting

g
∣∣
I−k

= f−k ◦ ξ
∑
i siti,k

∣∣
I0
◦ fk. (6)

It is not hard to see that the correspondences a 7→ f, (t1, . . . , td) 7→ g(t1,...,td), define a representation
of G, where a stands for the generator of the Z-factor of G.

Lemma 5.1. If A is Q-irreducible and (s1, . . . , sd) is nonzero, then the action constructed above
is faithful.

Proof: Denote by b1, . . . , bd the canonical basis of H := Qd. We need to show that for a given
nontrivial b := bt11 · · · b

td
d ∈ H, the associated map g := g(t1,...,td) acts nontrivially on [0, 1]. Assume

otherwise. Then according to (6), for all k ∈ Z,

0 =
∑
i

siti,k =
〈
(s1, . . . , sd), A

k(t1, . . . , td)
〉
.

As a consequence, the Q-span of Ak(t1, . . . , td), k ∈ Z, is a Q-invariant subspace orthogonal to
(s1, . . . , sd). However, as A is Q-irreducible, the only possibility is (t1, . . . , td) = 0, which implies
that b is the trivial element in H. �

Assume next that A is not hyperbolic. Associated to the transpose matrix AT , there is a
decomposition Rd = Es ⊕ Eu ⊕ Ec into stable, unstable, and central subspaces, respectively. The
space Ec necessarily contains a subspace Ec∗ of dimension 1 or 2 that is completely invariant under
AT and such that for each nontrivial vector therein, all vectors in its orbit under AT have the same
norm. Our goal is to prove

Proposition 5.2. If (s1, . . . , sd) belongs to Ec∗, then the action above is C1 smoothable.

This will follow almost directly from the next

Proposition 5.3. The map f and the subintervals Ik of the preceding construction can be taken
so that f is a C1 diffeomorphism that commutes with a C1 vector field whose support in (0, 1) is
nontrivial and contained in the union of the interior of the Ik’s.

Using f and the vector field above, we may perform the construction taking ξt as being the flow
associated to it. Indeed, since the vector field is C1 on the whole interval, equation (6) implies that
for a given (t1, . . . , td), the corresponding g(t1,...,td) is a C1 diffeomorphism provided the expressions∑

i siti,k remain uniformly bounded on k. However, as (s1, . . . , sd) belongs to Ec∗, this is always the
case, because∑

i

siti,k =
〈
(s1, . . . , sd), A

k(t1, . . . , td)
〉

=
〈
(AT )k(s1, . . . , sd), (t1, . . . , td)

〉
and {(AT )k(s1, . . . , sd), k ∈ Z} is a bounded subset of Rd.

To conclude the proof of Theorem 1.8, we need to show Proposition 5.3. Although at this point
we could refer to the classical construction of Pixton [31], we prefer to give a simpler argument
that decomposes into two elementary parts given by the next lemmas.
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Lemma 5.4. There exists a vector field X0 on [0, 1] with compact support in (0, 1) and a sequence
(ϕk) of C∞ diffeomorphisms of [0, 1] with compact support inside (0, 1) that converges to the identity
in the C1 topology and such that the diffeomorphisms ϕ̃k := ϕk ◦ · · · ◦ ϕ1 satisfy (ϕ̃k)∗(X0) = tkX0

for a certain sequence (tk) of positive numbers converging to zero.

Proof: Sart with the flow of translations on the real line and the corresponding (constant) vector
field. Any two positive times of this flow are smoothly conjugate by appropriate affine transforma-
tions. Now, map the real-line into the interval by a projective map. This yields the desired vector
field and diffeomorphisms, except for that the supports are not contained in (0, 1). To achieve this,
just start by performing the Muller-Tsuboi trick (c.f. Lemma 4.8) in order to make everything
flat at the endpoints, then extend everything trivially in both directions by slightly enlarging the
interval, and finally renormalize the resulting interval into [0, 1]. �

Given a diffeomorphism ϕ of (resp., vector field X on) an interval I, we denote by ϕ∨ (resp., X∨)
the diffeomorphism of (resp., vector field on) [0, 1] obtained after conjugacy (resp., push forward)
by the unique affine map sending I into [0, 1]. Proposition 5.3 is a direct consequence of the next

Lemma 5.5. There exists a C1 diffeomorphism f of [0, 1] fixing only the endpoints (with the origin
as a repelling fixed point) as well as a C1 vector field Y on [0, 1] such that f∗(Y) = Y and so that
for a certain x0 ∈ (0, 1), we have (Y|[x0,f(x0)])∨ = X0.

Proof: Start with a C∞ diffeomorphism g of [0, 1] that has no fixed point at the interior, and has
the origin as a repelling fixed point. Fix any x0 ∈ (0, 1), and let Z be a vector field on [x0, g(x0)]
such that Z∨ = X0. A moment’s reflexion shows that this construction can be performed so that
g is affine close to each endpoint.

For each k ∈ Z, let Ik := gk([x0, f(x0)]). Let ϕ∧k be a diffeomorphism of Ik into itself such that
(ϕ∧k )∨ = ϕk. Now let f be defined by letting f

∣∣
I|k|

:= ϕ∧|k| ◦ g
∣∣
I|k|

. Extend Z to the whole interval

[0, 1] by making it commute with g. Finally, define Y by letting Y
∣∣
I|k|

:= t|k|Z
∣∣
I|k|

for every k ∈ Z.

One easily checks that f and Y satisfy the desired properties. �

To close this section, we remark that similar ideas yield to faithful actions by C1 circle diffeo-
morphisms without finite orbits for the groups considered here. Indeed, it suffices to consider f as
being a Denjoy counter-example and then proceed as before along the intervals Ik := fk(I), where
I is a connected component of the complement of the exceptional minimal set of f . We leave the
details of this construction to the reader.

6 Actions on the circle

Recall the next folklore (and elementary) result: For every group of circle homeomorphisms, one
of the next three possibilities holds:

(i) there is a finite orbit,

(ii) all orbits are dense,

(iii) there is a unique minimal invariant closed set that is homeomorphic to the Cantor set. (This
is usually called an exceptional minimal set.)

Moreover, a result of Margulis states that in case of a minimal action, either the group is Abelian
and conjugate to a group of rotations, or it contains free subgroups in two generators. (See [25,
Chapter 2] for all of this.)

Assume next that a non-Abelian, solvable group acts faithfully by circle homeomorphisms. By
the preceding discussion, such an action cannot be minimal. As we next show, it can admit an
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exceptional minimal set. For concreteness, we consider the group G := ZnAQd, with A ∈ GLd(Q).
Start with a Denjoy counter-example g ∈ Homeo+(S1), that is, a circle homeomorphism of irrational
rotation number that is not minimal. Let Λ be the exceptional minimal set of g. Let I be one
of the connected components of S1 \ Λ, and for each n ∈ Z, denote In := gn(I). Consider any
representation φI : Qd → Homeo(I). (Such an action can be taken faithful just by integrating
a topological flow up to rationally independent times and associating the resulting maps to the
generators of Qd.) Then extend φI into φ : G→ Homeo+(S1) on the one hand by letting φ(a) := g,
and on the other hand, for each b ∈ H, letting the restriction of φ(b) to S1 \

⋃
n In being trivial,

and setting φ(h)|In = g−n ◦ φI(A−n(h)) ◦ gn for each n ∈ Z. It is easy to check that φ is faithful.
Part of the content of Theorem 1.9 is that in case A is hyperbolic, such an action cannot be by C1

diffeomorphisms. (Compare [18], where Cantwell-Conlon’s argument is used to prove this for the
case of the Baumslag-Solitar group.)

We next proceed to the proof of Theorem 1.9. Let again denote by G a subgroup of Z nA Qd

of the form H ×A Z, with rankQ(H) = d and A ∈ GLd(Z). Fix a Q-basis {b1, . . . , bd} of H, and
denote by a the generator of the cyclic factor (induced by A). We start with the next

Lemma 6.1. Suppose A has no eigenvalue equal to 1. Then for every representation of G into
Homeo+(S1), the set

⋂
Per(bi) of common periodic points of the bi’s is nonempty and G-invariant.

Proof: Let ρi ∈ R/Z be the rotation number of bi. Since H is Abelian and abia
−1 = b

α1,i

1 · · · bαd,id ,
we have

ρi = α1,iρ1 + · · ·+ αd,iρd (mod Z).

If we denote v := (ρ1, . . . , ρd), this yields AT v = v (mod Zd). Hence, v ∈ (AT − I)−1(Zd) ⊆ Qd.
Therefore, all the rotation numbers ρi are rational, thus all the bi’s have periodic points. Next,
notice that for every family of commuting circle homeomorphisms each of which has a fixed point,
there must be common fixed points. Indeed, they all necessarily fix the points in the support of
a common invariant probability measure. To show the invariance of

⋂
Per(bi), notice that H-

invariance is obvious by commutativity. Next, let p be fixed by bk11 , . . . , b
kd
d . Take N ∈ N such that

Nαi,j is an integer for all i, j. Then

abNkii a−1(p) = b
kiNα1,i

1 · · · bkiNαd,id (p) = p,

hence bNkii a−1(p) = a−1(p). We thus conclude that a−1(p) is a common periodic point of the bi’s,
as desired. �

Lemma 6.2. If a has periodic points, then there exists a finite orbit for G.

Proof: If a has periodic points, then every probability measure µ that is invariant by a must be
supported at these points. Since G is solvable (hence amenable), such a µ can be taken invariant
by the whole group. The points in the support of this measure must have a finite orbit. �

Summarizing, for every faithful action of G by circle homeomorphisms, the nonexistence of a
finite orbit implies that a admits an exceptional minimal set, say Λ. In what follows, we will show
that this last possibility cannot arise for representations into Diff1

+(S1) with non-Abelian image.
As the set

⋂
Per(bi) is invariant under a, closed, and nonempty, we must have Λ ⊆

⋂
Per(bi).

Changing each bi by bki for some k ∈ N, we may assume that the periodic points of the bi’s are
actually fixed. (Observe that the map sending bi into bki and fixing a is an automorphism of G.)
Given a point x in the complement of

⋂
Fix(bi) (which is nonempty due to the hypothesis), denote

by Ix the connected component of the complement of
⋂

Fix(bi) containing x. Then there is an H-
invariant measure µx supported on Ix associated to which there is a translation vector τx; moreover,
Lemma 4.3 still holds in this context.
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If I is any connected component of the complement of
⋂

Fix(bi), then there are points z1, . . . zd
in I such that Dbi(zi) = 1. Therefore, for every ε > 0, there exists δ > 0 such that if |I| < δ, then
1 − ε ≤ Dbi(z) ≤ 1 + ε holds for all z ∈ I and all i ∈ {1, . . . , d}. By decreasing δ if necessary, we
may also assume that

1− ε ≤ Da(y)

Da(z)
≤ 1 + ε for all y, z at distance dist(z, y) ≤ δ. (7)

As Ix is a wandering interval for a, we have that there exists k0 ∈ N such that |ak(Ix)| < δ and
|a−k(Ix)| < δ for all k ≥ k0. Together with (7), this allows to show the next analogue of Lemma 4.6
for the translation vectors ∆(x) :=

(
b1(x)− x, . . . , bd(x)− x

)
.

Lemma 6.3. For every η > 0, there exists k0 ∈ N such that if we denote by yk the left endpoint of
ak(I) and we let ε, ε̂ be defined by

4(a−1(x)) = Da−1(y−k)A
T4(x) + ε(x), x ∈ Ia−k(x0)

and
4(a(x)) = Da(yk) (AT )−14(x) + ε̂(x), x ∈ Iak(x0),

then ‖ε(x)‖ ≤ η‖4(x)‖ and ‖ε̂(x)‖ ≤ η‖4(x)‖ do hold for all k ≥ k0.

Again, the normalized translation vectors ~τa−n(x0) (resp., ~τan(x0)) accumulate at some ~τ ∈ Sd
(resp., ~τ∗) as n→∞. For each n ∈ Z, we let xn := a−n(x0), and we choose a sequence of positive
integers nk such that ~τxnk → ~τ and ~τx−nk → ~τ∗ as k →∞. With this notation, Lemma 4.7 remains
true.

Finally, Lemma 4.9 is easily adapted to this case:

Lemma 6.4. For any neighborhood V ⊂ Sd of Eu ∩Sd∗ in the unit sphere Sd∗ ⊂ Rd (with the norm
‖ · ‖∗), there is K0 ∈ N such that for all k ≥ K0 and all x ∈ a−k(Ix0) not fixed by H,

4(x)

‖4(x)‖∗
∈ V =⇒ 4(a−1(x))

‖4(a−1(x))‖∗
∈ V.

Moreover, if V is small enough, then there exists κ > 1 such that

4(x)

‖4(x)‖∗
∈ V =⇒ ‖4(a−1x)‖∗ ≥ κ Da−1(y−k)‖4(x)‖∗.

Now, we may conclude as in the proof of Proposition 1.5 up to a small detail. Namely, suppose
~τx0 /∈ Es. Then ~τ ∈ Eu. Using Lemmas 4.7 and 6.4, we get for k ≥ K0 and all n ∈ N,

‖4(xn+k)‖∗ ≥ κnDa−n(y−k)‖4(xk)‖∗.

Now, using the fact that the growth of Dan is uniformly sub-exponential,5 we get a contradiction
as n goes to infinity. In the case where ~τx0 ∈ Es, we have ~τx0 /∈ Es, and we may proceed as before
using a−1 instead of a.

This closes the proof of the absence of an exceptional minimal set, hence of the existence of a
finite orbit for G.

5This is well-known and follows from the unique ergodicity of a together with that the mean of log(Da) with
resepect to the unique invariant probability measure equals zero; see [19, Proposition I.I, Chapitre VI].
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(1993).

[5] C. Bonatti. Un point fixe commun pour des difféomorphismes commutants de S2. Annals of
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Mexicana 10 (2004), 219-244.

[31] D. Pixton. Nonsmoothable, unstable group actions. Trans. Amer. Math. Soc. 229 (1977), 259-
268.

[32] J. Plante. On solvable groups acting on the real line. Trans. Amer. Math. Soc. 278 (1983),
401-414.

[33] C. Rivas. On spaces of Conradian group orderings. Journal of Group Theory 13, no. 3 (2010),
337-353.

[34] K. Shinohara. On the minimality of semigroup actions on the interval which are C1-close to the
identity. Preprint (2012), arXiv:1210.0112.

[35] M. Shub & D. Sullivan. Expanding endomorphisms of the circle revisited. Ergodic Theory
Dynam. Systems 5 (1985), 285-289.

[36] W. Thurston. A generalization of the Reeb stability theorem. Topology. 13 (1974), 347-352.

[37] T. Tsuboi. Homological and dynamical study on certain groups of Lipschitz homeomorphisms of
the circle. J. Math. Soc. Japan 47, no 1 (1995), 1-30.

[38] T. Tsuboi. G1-structures avec une seule feuille. Asterisque. 116 (1984), 222-234.

25



Christian Bonatti (bonatti@u-bourgogne.fr), Univ. de Bourgogne, Dijon, France

Ignacio Monteverde (ignacio@cmat.edu.uy), Univ. de la República, Uruguay

Andrés Navas (andres.navas@usach.cl), USACH, Santiago, Chile
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