Some remarks and questions concerning orderable groups

Andrés Navas

Univ. de Santiago de Chile

RolfsenFest, CIRM Luminy, July 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For all finite subsets A, B, there is an element

$$f \in AB := \{gh : g \in A, h \in B\}$$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

For all finite subsets A, B, there is an element

$$f \in AB := \{gh : g \in A, h \in B\}$$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

UPP implies torsion-freenes

For all finite subsets A, B, there is an element

$$f \in AB := \{gh : g \in A, h \in B\}$$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

UPP implies torsion-freenes

Theorem (Rips-Segev, Steenbock; Promislow)

There exist torsion-free groups without the UPP.

For all finite subsets A, B, there is an element

 $f \in AB := \{gh : g \in A, h \in B\}$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

UPP implies torsion-freenes

Theorem (Rips-Segev, Steenbock; Promislow)

There exist torsion-free groups without the UPP.

$$\Gamma_P := \langle a, b : a^2 b a^2 = b, b^2 a b^2 = a \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For all finite subsets A, B, there is an element

$$f \in AB := \{gh : g \in A, h \in B\}$$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

UPP implies torsion-freenes

Theorem (Rips-Segev, Steenbock; Promislow)

There exist torsion-free groups without the UPP.

$$\Gamma_P := \langle a, b : a^2 b a^2 = b, b^2 a b^2 = a \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• No torsion: Γ_P is a crystallographic group...

For all finite subsets A, B, there is an element

 $f \in AB := \{gh : g \in A, h \in B\}$

that can be written uniquely as f = gh, with $g \in A$ and $h \in B$.

UPP implies torsion-freenes

Theorem (Rips-Segev, Steenbock; Promislow)

There exist torsion-free groups without the UPP.

$$\Gamma_P := \langle a, b : a^2 b a^2 = b, b^2 a b^2 = a \rangle$$

- No torsion: Γ_P is a crystallographic group...
- The UPP fails for A = B being equal to

 $\{(ba)^2, (ab)^2, a^2b, aba^{-1}, b, ab^{-1}a, b^{-1}, aba, ab^{-2}, b^2a^{-1}, a(ba)^2, bab, a, a^{-1}\}$

Consider triplets (uvw), where each u,v,w is either an integer or of the form \hat{m} .

Multiplication rule:

$$(u_1 v_1 w_1)(u_2 v_2 w_2) := (u_1 \oplus u_2 \ v_1 \oplus v_2 \ w_1 \oplus w_2)$$

where for m, n in \mathbb{Z} : $m \oplus n := m + n, \quad m \oplus \hat{n} := \widehat{m + n}, \quad \hat{m} \oplus n := \widehat{m - n}, \quad \hat{m} \oplus \hat{n} := m - n$

Consider triplets (uvw), where each u,v,w is either an integer or of the form \hat{m} .

Multiplication rule:

$$(u_1 v_1 w_1)(u_2 v_2 w_2) := (u_1 \oplus u_2 \ v_1 \oplus v_2 \ w_1 \oplus w_2)$$

where for m, n in \mathbb{Z} : $m \oplus n := m + n, \quad m \oplus \hat{n} := \widehat{m + n}, \quad \hat{m} \oplus n := \widehat{m - n}, \quad \hat{m} \oplus \hat{n} := m - n$

 $\Gamma_P = \langle a \sim (\hat{1}\hat{0}\hat{0}), b \sim (\hat{0}\hat{1}\hat{1})
angle$

Consider triplets (uvw), where each u,v,w is either an integer or of the form \hat{m} .

Multiplication rule:

$$(u_1 v_1 w_1)(u_2 v_2 w_2) := (u_1 \oplus u_2 \ v_1 \oplus v_2 \ w_1 \oplus w_2)$$

where for m, n in \mathbb{Z} : $m \oplus n := m + n, \quad m \oplus \hat{n} := \widehat{m + n}, \quad \hat{m} \oplus n := \widehat{m - n}, \quad \hat{m} \oplus \hat{n} := m - n$

 $\Gamma_P = \langle a \sim (\hat{1}\hat{0}\hat{0}), b \sim (\hat{0}\hat{1}\hat{1})
angle$

 $\begin{array}{l} (002), (00\underline{2}), (\hat{2}1\hat{1}), (\hat{2}\underline{1}\underline{\hat{1}}), (\hat{0}1\hat{1}), (\hat{0}1\underline{\hat{1}}), (\hat{0}\underline{1}\hat{1}), \\ (\hat{0}\underline{1}\underline{\hat{1}}), (1\hat{2}\hat{0}), (\underline{1}\hat{2}\hat{0}), (1\hat{0}\underline{\hat{2}}), (\underline{1}\hat{0}\hat{2}), (1\hat{0}\hat{0}), (\underline{1}\hat{0}\hat{0}) \end{array}$

	(002)	(00 <u>2</u>)	(211î)	(2 <u>11</u>)	(Ô1Î)	$(\hat{0}1\hat{\underline{1}})$	(Ô <u>1</u> 1̂)	(ô <u>11</u>)	(12̂0̂)	(<u>1</u> 2̂0)	(1Ô <u>2</u>)	(<u>1</u> Ô2̂)	(1ÔÔ)	(<u>1</u> ôô)
(002)	(004)	(000)	(213)	(2 <u>1</u> 1)	(Ô1Ĵ)	(Ô11̂)	(ô <u>1</u> 3̂)	(Ô <u>1</u> 1̂)	(122)	(<u>1</u> 22)	(1ôô)	(<u>1</u> ÔÂ)	(1ô2̂)	(<u>1</u> Ô2̂)
(00 <u>2</u>)	(000)	(00 <u>4</u>)	(21 <u>1</u>)	(2 <u>13</u>)	(Ô1 <u>1</u>)	(Ô1 <u>3</u>)	(ô <u>11</u>)	(ô <u>1ŝ</u>)	(12 <u>2</u>)	(<u>1</u> 2 <u>2</u>)	(1ô <u>4</u>)	(<u>1</u> ÔÔ)	(1ô <u>2</u>)	(<u>1</u> Ô <u>2</u>)
(211î)	(21 <u>1</u>)	(213 [̂])	(020)	(002)	(220)	(222)	(200)	(202)	(131)	(331)	(113)	(31 <u>1</u>)	(îî1)	(<i>3</i> 11)
(2 <u>11</u>)	(2 <u>13</u>)	$(\hat{2}\underline{1}\hat{1})$	(00 <u>2</u>)	(0 <u>2</u> 0)	(20 <u>2</u>)	(200)	(2 <u>22</u>)	(2 <u>2</u> 0)	(îî <u>1</u>)	(31 <u>1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(3 <u>1</u> 3)	(î <u>î1</u>)	(3 <u>1</u> 1)
(Ô1Î)	(Ô1 <u>1</u>)	(Ô1Ĵ)	(<u>2</u> 20)	(<u>2</u> 02)	(020)	(022)	(000)	(002)	(<u>1</u> 31)	(131)	(<u>1</u> 13)	(îî <u>1</u>)	$(\hat{1}\hat{1}1)$	(111)
(Ô1 <u>1</u> ̂)	(ô1 <u>3</u>)	(Ô1Î)	(<u>2</u> 2 <u>2</u>)	(<u>2</u> 00)	(02 <u>2</u>)	(020)	(00 <u>2</u>)	(000)	(<u>1</u> 3 <u>1</u>)	(îŝ <u>1</u>)	$(\hat{1}\hat{1}1)$	(îî <u>3</u>)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)
(ô <u>1</u> î)	(ô <u>11</u>)	(ô <u>1</u> 3̂)	(<u>2</u> 00)	(<u>22</u> 2)	(000)	(002)	(0 <u>2</u> 0)	(0 <u>2</u> 2)	(<u>î</u> 11)	(111)	(<u>11</u> 3)	(î <u>î1</u>)	(<u>îî</u> 1)	(î <u>î</u> 1)
(ô <u>11</u>)	(ô <u>1</u> 3)	(ô <u>1</u> î)	(<u>2</u> 0 <u>2</u>)	(<u>22</u> 0)	(00 <u>2</u>)	(000)	(0 <u>22</u>)	(0 <u>2</u> 0)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)	$(\hat{1}\hat{1}1)$	(1 <u>1</u> 3)	(<u>îî1</u>)	(î <u>î1</u>)
(12ô)	(12 <u>2</u>)	(122 ²)	(31 <u>1</u>)	(331)	(îî <u>1</u>)	(111)	(îŝ <u>1</u>)	(131)	(200)	(000)	(222)	(02 <u>2</u>)	(220)	(020)
(<u>1</u> 2̂0)	(<u>1</u> 2 <u>2</u>)	(<u>1</u> 22)	(îî <u>1</u>)	(131)	$(\hat{1}\hat{1}\hat{1})$	$(\hat{1}\hat{1}1)$	(<u>1</u> 3 <u>1</u>)	(<u>1</u> 31)	(000)	(<u>2</u> 00)	(022)	(<u>2</u> 2 <u>2</u>)	(020)	(<u>2</u> 20)
(1ô <u>2</u>)	(1Ô <u>4</u>)	(1ÔÔ)	(3 <u>1</u> 3)	(31 <u>1</u>)	(1 <u>1</u> 3)	(î <u>î1</u>)	(î1 <u>3</u>)	(îî <u>1</u>)	(2 <u>22</u>)	(0 <u>22</u>)	(200)	(00 <u>4</u>)	(20 <u>2</u>)	(00 <u>2</u>)
(<u>1</u> Ô2̂)	(<u>1</u> ôô)	(<u>1</u> ÔÂ)	$(\hat{1}\hat{\underline{1}}1)$	(113)	(<u>îî</u> 1)	(<u>11</u> 3)	(<u>î</u> 11)	(<u>1</u> 13)	(0 <u>2</u> 2)	(<u>22</u> 2)	(004)	(<u>2</u> 00)	(002)	(<u>2</u> 02)
(1ôô)	(1Ô <u>2</u>)	(1Ô2̂)	(3 <u>1</u> 1)	(311)	(î <u>î1</u>)	$(\hat{1}\underline{\hat{1}}1)$	(îî <u>1</u>)	(111)	(2 <u>2</u> 0)	(0 <u>2</u> 0)	(202)	(00 <u>2</u>)	(200)	(000)
(<u>1</u> ôô)	(<u>1</u> ô <u>2</u>)	(<u>1</u> ô2)	(î <u>î1</u>)	(111)	(<u>îî1</u>)	(<u>îî</u> 1)	(<u>î</u> 1 <u>1</u>)	(<u>î</u> 11)	(0 <u>2</u> 0)	(<u>22</u> 0)	(002)	(<u>202</u>)	(000)	(<u>2</u> 00)

	(002)	(00 <u>2</u>)	(211î)	(2 <u>11</u>)	(Ô1Î)	$(\hat{0}1\hat{\underline{1}})$	(Ô <u>1</u> 1̂)	(ô <u>11</u>)	(12ô)	(<u>1</u> 2̂0)	(1Ô <u>2</u>)	(<u>1</u> Ô2̂)	(1ÔÔ)	(<u>1</u> ÔÔ)
(002)	(004)	(000)	(213)	(2 <u>1</u> 1̂)	(Ô1Ĵ)	(Ô11̂)	(ô <u>1</u> 3̂)	(ô <u>1</u> î)	(122)	(<u>1</u> 22)	(1ôô)	(<u>1</u> ÔÂ)	(1ô2̂)	(<u>1</u> Ô2̂)
(00 <u>2</u>)	(000)	(00 <u>4</u>)	(21 <u>1</u>)	(2 <u>13</u>)	(Ô1 <u>1</u>)	(Ô1 <u>3</u>)	(ô <u>11</u>)	(ô <u>1ŝ</u>)	(12 <u>2</u>)	(<u>1</u> 2 <u>2</u>)	(10 <u>4</u>)	(<u>1</u> ôô)	(1ô <u>2</u>)	(<u>1</u> Ô <u>2</u>)
(211î)	(21 <u>1</u>)	(213 [̂])	(020)	(002)	(220)	(222)	(200)	(202)	(131)	(331)	(113)	(31 <u>1</u>)	(îî1)	(<i>3</i> 11)
(2 <u>11</u>)	(2 <u>13</u>)	(2 <u>1</u> 1)	(00 <u>2</u>)	(0 <u>2</u> 0)	(20 <u>2</u>)	(200)	(2 <u>22</u>)	(2 <u>2</u> 0)	(îî <u>1</u>)	(31 <u>1</u>)	(î <u>î</u> 1)	(3 <u>1</u> 3)	(î <u>î1</u>)	(3 <u>11</u>)
(Ô11̂)	(ô1 <u>î</u>)	(Ô1Ĵ)	(<u>2</u> 20)	(<u>2</u> 02)	(020)	(022)	(000)	(002)	$(\hat{1}\hat{3}1)$	(131)	(<u>î</u> 13)	(îî <u>1</u>)	$(\hat{1}\hat{1}1)$	(îî1)
(Ô1 <u>1</u>)	(ô1 <u>ŝ</u>)	(Ô1Î)	(<u>2</u> 2 <u>2</u>)	(<u>2</u> 00)	(02 <u>2</u>)	(020)	(00 <u>2</u>)	(000)	$(\hat{1}\hat{3}\underline{1})$	(îŝ <u>1</u>)	$(\hat{1}\hat{1}1)$	(îî <u>3</u>)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)
(ô <u>1</u> î)	(ô <u>11</u>)	(ô <u>1</u> 3̂)	(<u>2</u> 00)	(<u>22</u> 2)	(000)	(002)	(0 <u>2</u> 0)	(0 <u>2</u> 2)	(<u>î</u> 11)	(111)	(<u>îî</u> 3)	(î <u>î1</u>)	(<u>îî</u> 1)	(î <u>î</u> 1)
(ô <u>11</u>)	(ô <u>1</u> 3)	(ô <u>1</u> î)	(<u>2</u> 0 <u>2</u>)	(<u>22</u> 0)	(00 <u>2</u>)	(000)	(0 <u>22</u>)	(0 <u>2</u> 0)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)	(<u>îî</u> 1)	(1 <u>1</u> 3)	(<u>îî1</u>)	(î <u>î1</u>)
(12ô)	(12 <u>2</u>)	(122̂)	(31 <u>1</u>)	(331)	(îî <u>1</u>)	(111)	(13 <u>1</u>)	(131)	(200)	(000)	(222)	(02 <u>2</u>)	(220)	(020)
(<u>1</u> 20)	(<u>1</u> 2 <u>2</u>)	(<u>1</u> 22)	(îî <u>1</u>)	(131)	$(\hat{\underline{1}}\hat{1}\underline{1})$	$(\hat{1}\hat{1}1)$	$(\hat{1}\hat{3}\underline{1})$	(<u>1</u> 31)	(000)	(<u>2</u> 00)	(022)	(<u>2</u> 2 <u>2</u>)	(020)	(<u>2</u> 20)
(1Ô <u>2</u>)	(1ô <u>4</u>)	(1ÔÔ)	(3 <u>1</u> 3)	(31 <u>1</u>)	(1 <u>1</u> 3)	(î <u>î1</u>)	(îî <u>3</u>)	(îî <u>1</u>)	(2 <u>22</u>)	(0 <u>22</u>)	(200)	(00 <u>4</u>)	(20 <u>2</u>)	(00 <u>2</u>)
(<u>1</u> ô2)	(<u>1</u> ôô)	(<u>1</u> ÔÂ)	(î <u>î</u> 1)	(113)	(<u>îî</u> 1)	(<u>11</u> 3)	(<u>î</u> 11)	(<u>î</u> 13)	(0 <u>2</u> 2)	(<u>22</u> 2)	(004)	(<u>2</u> 00)	(002)	(<u>2</u> 02)
(1ÔÔ)	(1Ô <u>2</u>)	(1Ô2̂)	(3 <u>11</u>)	(311)	(î <u>î1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(îî <u>1</u>)	(111)	(2 <u>2</u> 0)	(0 <u>2</u> 0)	(202)	(00 <u>2</u>)	(200)	(000)
(<u>1</u> ôô)	(<u>1</u> Ô <u>2</u>)	(<u>1</u> Ô2̂)	(î <u>î1</u>)	(îî1)	(<u>îî1</u>)	(<u>îî</u> 1)	(<u>î</u> 1 <u>1</u>)	(<u>î</u> 11)	(0 <u>2</u> 0)	(<u>22</u> 0)	(002)	(<u>2</u> 0 <u>2</u>)	(000)	(<u>2</u> 00)

	(002)	(00 <u>2</u>)	(211î)	(2 <u>11</u>)	(Ô1Î)	(Ô1 <u>1</u>)	(Ô <u>1</u> 1̂)	(ô <u>11</u>)	(12ô)	(<u>1</u> 2ô)	(1Ô <u>2</u>)	(<u>1</u> Ô2̂)	(1ÔÔ)	(<u>1</u> ÔÔ)
(002)	(004)	(000)	(213)	(2 <u>1</u> 1̂)	(Ô1Ĵ)	(Ô1Î)	(ô <u>1</u> 3̂)	(ô <u>1</u> î)	(122̂)	(<u>1</u> 22)	(1ÔÔ)	(<u>1</u> ÔÂ)	(1Ô2̂)	(<u>1</u> Ô2̂)
(00 <u>2</u>)	(000)	(00 <u>4</u>)	$(\hat{2}1\hat{\underline{1}})$	(2 <u>13</u>)	(Ô1 <u>1</u>)	(Ô1 <u>3</u>)	(ô <u>11</u>)	(ô <u>1ŝ</u>)	$(1\hat{2}\hat{2})$	(<u>1</u> 2 <u>2</u>)	(1Ô <u>4</u>)	(<u>1</u> ÔÔ)	(1Ô <u>2</u>)	(<u>1</u> Ô <u>2</u>)
(211î)	(21 <u>1</u>)	(213 [̂])	(020)	(002)	(220)	(222)	(200)	(202)	(131)	(331)	(113)	(31 <u>1</u>)	(111)	(311)
(2 <u>11</u>)	(2 <u>13</u>)	(2 <u>1</u> 1̂)	(00 <u>2</u>)	(0 <u>2</u> 0)	(20 <u>2</u>)	(200)	(2 <u>22</u>)	(2 <u>2</u> 0)	(îî <u>1</u>)	(31 <u>1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(3 <u>1</u> 3)	(î <u>î1</u>)	(3 <u>11</u>)
(Ô1Î)	(ô1 <u>î</u>)	(Ô1Ĵ)	(<u>2</u> 20)	(<u>2</u> 02)	(020)	(022)	(000)	(002)	(<u>1</u> 31)	(131)	(<u>1</u> 13)	(îî <u>1</u>)	(<u>î</u> 11)	(îî1)
(Ô1 <u>î</u>)	(ô1 <u>ŝ</u>)	(Ô1Î)	(<u>2</u> 2 <u>2</u>)	(<u>2</u> 00)	(02 <u>2</u>)	(020)	(00 <u>2</u>)	(000)	(<u>1</u> 3 <u>1</u>)	(îŝ <u>1</u>)	(<u>î</u> 11)	(îî <u>3</u>)	$(\hat{1}\hat{1}\hat{1})$	(îî <u>1</u>)
(ô <u>1</u> î)	(ô <u>11</u>)	(ô <u>1</u> 3̂)	(<u>2</u> 00)	(<u>22</u> 2)	(000)	(002)	(0 <u>2</u> 0)	(0 <u>2</u> 2)	(<u>î</u> 11)	(111)	(<u>11</u> 3)	(î <u>î1</u>)	(<u>1</u> 11)	$(\hat{1}\hat{\underline{1}}1)$
(ô <u>11</u>)	(ô <u>1ŝ</u>)	(ô <u>1</u> î)	(<u>2</u> 0 <u>2</u>)	(<u>22</u> 0)	(00 <u>2</u>)	(000)	(0 <u>22</u>)	(0 <u>2</u> 0)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)	(<u>îî</u> 1)	(1 <u>1</u> 3)	(<u>îî1</u>)	(î <u>î1</u>)
(12ô)	(12 <u>2</u>)	(122)	(31 <u>1</u>)	(331)	(îî <u>1</u>)	(îî1)	(îŝ <u>1</u>)	(131)	(200)	(000)	(222)	(02 <u>2</u>)	(220)	(020)
(<u>1</u> 20)	(<u>1</u> 2 <u>2</u>)	(<u>1</u> 22)	(îî <u>1</u>)	(131)	(<u>î</u> 1 <u>1</u>)	$(\hat{1}\hat{1}1)$	(<u>1</u> 3 <u>1</u>)	(<u>1</u> 31)	(000)	(<u>2</u> 00)	(022)	(<u>2</u> 2 <u>2</u>)	(020)	(<u>2</u> 20)
(1ô <u>2</u>)	(1Ô <u>4</u>)	(1ÔÔ)	(3 <u>1</u> 3)	(31 <u>1</u>)	(1 <u>1</u> 3)	(î <u>î1</u>)	(îî <u>3</u>)	(îî <u>1</u>)	(2 <u>22</u>)	(0 <u>22</u>)	(200)	(00 <u>4</u>)	(20 <u>2</u>)	(00 <u>2</u>)
(<u>1</u> ô2)	(<u>1</u> ôô)	(<u>1</u> ô4)	(î <u>î</u> 1)	(113)	(<u>îî</u> 1)	(<u>11</u> 3)	$(\hat{1}\hat{1}1)$	(<u>î</u> 13)	(0 <u>2</u> 2)	(<u>22</u> 2)	(004)	(<u>2</u> 00)	(002)	(<u>2</u> 02)
(1ôô)	(1Ô <u>2</u>)	(1Ô2̂)	(3 <u>11</u>)	(311)	(î <u>î1</u>)	(î <u>î</u> 1)	(îî <u>1</u>)	(111)	(2 <u>2</u> 0)	(0 <u>2</u> 0)	(202)	(00 <u>2</u>)	(200)	(000)
(<u>1</u> ôô)	(<u>1</u> ô <u>2</u>)	(<u>1</u> ô2̂)	(î <u>î1</u>)	(îî1)	(<u>îî1</u>)	(<u>îî</u> 1)	$(\hat{1}\hat{1}\hat{1})$	(<u>î</u> 11)	(0 <u>2</u> 0)	(<u>22</u> 0)	(002)	(<u>2</u> 0 <u>2</u>)	(000)	(<u>2</u> 00)

	(002)	(00 <u>2</u>)	(211î)	(2 <u>11</u>)	(Ô1Î)	$(\hat{0}1\hat{\underline{1}})$	(ô <u>1</u> î)	(ô <u>11</u>)	(12ô)	(<u>1</u> 20)	(1Ô <u>2</u>)	(<u>1</u> Ô2̂)	(1ÔÔ)	(<u>1</u> ÔÔ)
(002)	(004)	(000)	(213)	(2 <u>1</u> 1)	(Ô1Ĵ)	(Ô11̂)	(ô <u>1</u> 3̂)	(Ô <u>1</u> 1̂)	(122)	(<u>1</u> 22)	(1ôô)	(<u>1</u> ÔÂ)	(1ô2̂)	(<u>1</u> Ô2̂)
(00 <u>2</u>)	(000)	(00 <u>4</u>)	(21 <u>1</u>)	(2 <u>13</u>)	(Ô1 <u>1</u>)	(Ô1 <u>3</u>)	(ô <u>11</u>)	(ô <u>1ŝ</u>)	(12 <u>2</u>)	(<u>1</u> 2 <u>2</u>)	(10 <u>4</u>)	(<u>1</u> ôô)	(1ô <u>2</u>)	(<u>1</u> Ô <u>2</u>)
(211î)	(21 <u>1</u>)	(213 [̂])	(020)	(002)	(220)	(222)	(200)	(202)	(131)	(331)	(113)	(31 <u>1</u>)	(îî1)	(<i>3</i> 11)
(2 <u>11</u>)	(2 <u>13</u>)	(2 <u>1</u> 1̂)	(00 <u>2</u>)	(0 <u>2</u> 0)	(20 <u>2</u>)	(200)	(2 <u>22</u>)	(2 <u>2</u> 0)	(îî <u>1</u>)	(31 <u>1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(3 <u>1</u> 3)	(î <u>î1</u>)	(3 <u>1</u> 1)
(Ô1Î)	(Ô1 <u>1</u>)	(Ô1Ĵ)	(<u>2</u> 20)	(<u>2</u> 02)	(020)	(022)	(000)	(002)	(<u>1</u> 31)	(131)	(<u>1</u> 13)	(îî <u>1</u>)	$(\hat{1}\hat{1}1)$	(111)
(Ô1 <u>1</u>)	(ô1 <u>3</u>)	(Ô1Î)	(<u>2</u> 2 <u>2</u>)	(<u>2</u> 00)	(02 <u>2</u>)	(020)	(00 <u>2</u>)	(000)	$(\hat{1}\hat{3}\underline{1})$	(îŝ <u>1</u>)	$(\hat{1}\hat{1}1)$	(îî <u>3</u>)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)
(ô <u>1</u> î)	(ô <u>11</u>)	(ô <u>1</u> 3̂)	(<u>2</u> 00)	(<u>22</u> 2)	(000)	(002)	(0 <u>2</u> 0)	(0 <u>2</u> 2)	(<u>î</u> 11)	(111)	(<u>îî</u> 3)	(î <u>î1</u>)	(<u>îî</u> 1)	(î <u>î</u> 1)
(ô <u>11</u>)	(ô <u>1</u> 3)	(ô <u>1</u> î)	(<u>2</u> 0 <u>2</u>)	(<u>22</u> 0)	(00 <u>2</u>)	(000)	(0 <u>22</u>)	(0 <u>2</u> 0)	$(\hat{\underline{1}}\hat{1}\underline{1})$	(îî <u>1</u>)	(<u>îî</u> 1)	(1 <u>1</u> 3)	(<u>îî1</u>)	(î <u>î1</u>)
(12ô)	(12 <u>2</u>)	(122̂)	(31 <u>1</u>)	(331)	(îî <u>1</u>)	(111)	(îŝ <u>1</u>)	(131)	(200)	(000)	(222)	(02 <u>2</u>)	(220)	(020)
(<u>1</u> 20)	(<u>1</u> 2 <u>2</u>)	(<u>1</u> 22)	(îî <u>1</u>)	(131)	(<u>î</u> 1 <u>1</u>)	(<u>î</u> 11)	(<u>1</u> 3 <u>1</u>)	(<u>1</u> 31)	(000)	(<u>2</u> 00)	(022)	(<u>2</u> 2 <u>2</u>)	(020)	(<u>2</u> 20)
(1Ô <u>2</u>)	(1Ô <u>4</u>)	(1ÔÔ)	(3 <u>1</u> 3)	(31 <u>1</u>)	(î <u>î3</u>)	(î <u>î1</u>)	(îî <u>3</u>)	(îî <u>1</u>)	(2 <u>22</u>)	(0 <u>22</u>)	(200)	(00 <u>4</u>)	(20 <u>2</u>)	(00 <u>2</u>)
(<u>1</u> ô2̂)	(<u>1</u> ÔÔ)	(<u>1</u> ÔÂ)	(î <u>î</u> 1)	(113)	(<u>îî</u> 1)	(<u>îî</u> 3)	(<u>î</u> 11)	(<u>î</u> 13)	(0 <u>2</u> 2)	(<u>22</u> 2)	(004)	(<u>2</u> 00)	(002)	(<u>2</u> 02)
(1ÔÔ)	(1Ô <u>2</u>)	(1Ô2̂)	(3 <u>1</u> 1)	(311)	(î <u>î1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(îî <u>1</u>)	(îî1)	(2 <u>2</u> 0)	(0 <u>2</u> 0)	(202)	(00 <u>2</u>)	(200)	(000)
(<u>1</u> ôô)	(<u>1</u> Ô <u>2</u>)	(<u>1</u> ô2)	(î <u>î1</u>)	(îî1)	(<u>îî1</u>)	(<u>îî</u> 1)	(<u>î</u> 1 <u>1</u>)	(<u>î</u> 11)	(0 <u>2</u> 0)	(<u>22</u> 0)	(002)	(<u>2</u> 0 <u>2</u>)	(000)	(<u>2</u> 00)

	(002)	(00 <u>2</u>)	(211î)	(2 <u>11</u>)	(Ô1Î)	$(\hat{0}1\hat{\underline{1}})$	(Ô <u>1</u> 1̂)	(ô <u>11</u>)	(12ô)	(<u>1</u> 2ô)	$(1\hat{0}\hat{2})$	(<u>1</u> Ô2̂)	(1ÔÔ)	(<u>1</u> ÔÔ)
(002)	(004)	(000)	(213)	(2 <u>1</u> 1̂)	(Ô1Ĵ)	(Ô1Î)	(ô <u>1</u> 3̂)	(ô <u>1</u> î)	(122)	(<u>1</u> 22)	(1ÔÔ)	(<u>1</u> ÔÂ)	(1ô2̂)	(<u>1</u> Ô2̂)
(00 <u>2</u>)	(000)	(00 <u>4</u>)	(21 <u>1</u>)	(2 <u>13</u>)	(Ô1 <u>1</u>)	(Ô1 <u>3</u>)	(ô <u>11</u>)	(ô <u>1ŝ</u>)	(12 <u>2</u>)	(<u>1</u> 2 <u>2</u>)	(1Ô <u>4</u>)	(<u>1</u> ÔÔ)	(1Ô <u>2</u>)	(<u>1</u> Ô <u>2</u>)
(211î)	$(\hat{2}1\hat{\underline{1}})$	(213 [̂])	(020)	(002)	(220)	(222)	(200)	(202)	(131)	(331)	(113)	(31 <u>1</u>)	(îî1)	(311)
(2 <u>11</u>)	(2 <u>13</u>)	(2 <u>1</u> 1)	(00 <u>2</u>)	(0 <u>2</u> 0)	(20 <u>2</u>)	(200)	(2 <u>22</u>)	(2 <u>2</u> 0)	(îî <u>1</u>)	(31 <u>1</u>)	(î <u>î</u> 1)	(3 <u>1</u> 3)	(î <u>î1</u>)	(3 <u>1</u> 1)
(Ô1Î)	(Ô1 <u>1</u>)	(Ô1Ĵ)	(<u>2</u> 20)	(<u>2</u> 02)	(020)	(022)	(000)	(002)	(<u>1</u> 31)	(131)	(<u>1</u> 13)	(îî <u>1</u>)	$(\hat{1}\hat{1}1)$	(111)
(ô1 <u>î</u>)	(ô1 <u>ŝ</u>)	(Ô1Î)	(<u>2</u> 2 <u>2</u>)	(<u>2</u> 00)	(02 <u>2</u>)	(020)	(00 <u>2</u>)	(000)	(<u>1</u> 3 <u>1</u>)	(îŝ <u>1</u>)	(<u>î</u> 11)	(îî <u>3</u>)	$(\hat{1}\hat{1}\hat{1})$	(îî <u>1</u>)
(ô <u>1</u> î)	(ô <u>11</u>)	(ô <u>1</u> 3̂)	(<u>2</u> 00)	(<u>22</u> 2)	(000)	(002)	(0 <u>2</u> 0)	(0 <u>2</u> 2)	$(\hat{1}\hat{1}1)$	(111)	(<u>îî</u> 3)	(î <u>î1</u>)	$(\hat{1}\hat{1})$	(î <u>î</u> 1)
(ô <u>11</u>)	(ô <u>1ŝ</u>)	(ô <u>1</u> î)	(<u>2</u> 0 <u>2</u>)	(<u>22</u> 0)	(00 <u>2</u>)	(000)	(0 <u>22</u>)	(0 <u>2</u> 0)	$(\hat{1}\hat{1}\hat{1})$	(îî <u>1</u>)	(<u>îî</u> 1)	(1 <u>1</u> 3)	(<u>îî1</u>)	(î <u>î1</u>)
(12ô)	(12 <u>2</u>)	(122)	(31 <u>1</u>)	(331)	(îî <u>1</u>)	(îî1)	(îŝ <u>1</u>)	(131)	(200)	(000)	(222)	(02 <u>2</u>)	(220)	(020)
(<u>1</u> 20̂)	(<u>1</u> 2 <u>2</u>)	(<u>1</u> 22)	(îî <u>1</u>)	(131)	$(\hat{1}\hat{1}\hat{1})$	$(\hat{1}\hat{1}1)$	(<u>1</u> 3 <u>1</u>)	(<u>1</u> 31)	(000)	(<u>2</u> 00)	(022)	(<u>2</u> 2 <u>2</u>)	(020)	(<u>2</u> 20)
(1ô <u>2</u>)	(1ô <u>4</u>)	(1ÔÔ)	(3 <u>1</u> 3)	(31 <u>1</u>)	(î <u>î3</u>)	(î <u>î1</u>)	(îî <u>3</u>)	(îî <u>1</u>)	(2 <u>22</u>)	(0 <u>22</u>)	(200)	(00 <u>4</u>)	(20 <u>2</u>)	(00 <u>2</u>)
(<u>1</u> Ô2̂)	(<u>1</u> ÔÔ)	(<u>1</u> ÔÂ)	$(\hat{1}\hat{\underline{1}}1)$	(113)	(<u>îî</u> 1)	(<u>îî</u> 3)	(<u>î</u> 11)	(<u>1</u> 13)	(0 <u>2</u> 2)	(<u>22</u> 2)	(004)	(<u>2</u> 00)	(002)	(<u>2</u> 02)
(1ôô)	(1Ô <u>2</u>)	(1Ô2̂)	(3 <u>1</u> 1)	(311)	(î <u>î1</u>)	$(\hat{1}\hat{\underline{1}}1)$	(îî <u>1</u>)	(111)	(2 <u>2</u> 0)	(0 <u>2</u> 0)	(202)	(00 <u>2</u>)	(200)	(000)
(<u>1</u> ôô)	(<u>1</u> ô <u>2</u>)	(<u>1</u> Ô2̂)	(î <u>î1</u>)	(111)	(<u>îî1</u>)	(<u>îî</u> 1)	(<u>î</u> 1 <u>1</u>)	(<u>î</u> 11)	(0 <u>2</u> 0)	(<u>22</u> 0)	(002)	(<u>2</u> 0 <u>2</u>)	(000)	(<u>2</u> 00)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Orderable groups do satisfy the UPP.

Orderable groups do satisfy the UPP.

Question

Does there exist a UPP group which is non-orderable ?

Theorem (Delzant, Bowditch, Chiswell)

If a hyperbolic closed manifold has a "large enough" injectivity radius, then its π_1 satisfies the UPP.

Theorem (Delzant, Bowditch, Chiswell)

If a hyperbolic closed manifold has a "large enough" injectivity radius, then its π_1 satisfies the UPP.

Question

Does there exist a sequence of closed hyperbolic 3-manifolds with non-orderable π_1 and injectivity radius going to infinite ?

Theorem (Delzant, Bowditch, Chiswell)

If a hyperbolic closed manifold has a "large enough" injectivity radius, then its π_1 satisfies the UPP.

Question

Does there exist a sequence of closed hyperbolic 3-manifolds with non-orderable π_1 and injectivity radius going to infinite ?

Theorem (F.Calegari, Dunfield)

There exists a sequence of closed hyperbolic 3-manifolds with trivial first Betti numbers and injectivity radius going to infinite.

Let Γ be an orderable group satisfying a nontrivial law (identity). Is Γ necessarily solvable (or at least locally indicable) ?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Let Γ be an orderable group satisfying a nontrivial law (identity). Is Γ necessarily solvable (or at least locally indicable) ?

An affirmative answer to (the weak form of) this question would solve the next

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let Γ be an orderable group satisfying a nontrivial law (identity). Is Γ necessarily solvable (or at least locally indicable) ?

An affirmative answer to (the weak form of) this question would solve the next

Question (?, Glass)

Is every orderable Engel group nilpotent ?

Let Γ be an orderable group satisfying a nontrivial law (identity). Is Γ necessarily solvable (or at least locally indicable) ?

An affirmative answer to (the weak form of) this question would solve the next

Question (?, Glass)

Is every orderable Engel group nilpotent ?

Theorem (Akhmedov, N)

If Γ is a subgroup of $\operatorname{Diff}_+^{\omega}([0,1])$ ($\operatorname{Diff}_+^2([0,1])$?) satisfying a nontrivial law, then Γ is solvable.

Bi-invariant: left-invariant and $g^{-1}fg \in P$ for all f, g in P

Bi-invariant: left-invariant and g⁻¹fg ∈ P for all f, g in P
Conrad: left-invariant and g⁻¹fg² ∈ P for all f, g in P

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bi-invariant: left-invariant and $g^{-1}fg \in P$ for all f,g in P

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Conrad: left-invariant and $g^{-1}fg^2 \in P$ for all f,g in P

- Bi-invariant: left-invariant and $g^{-1}fg \in P$ for all f, g in P
- Conrad: left-invariant and $g^{-1}fg^2 \in P$ for all f, g in P (equivalent to being locally indicable: Conrad; Brodskii, Rhemtulla-Rolfsen, N)

Bi-invariant: left-invariant and $g^{-1}fg \in P$ for all f, g in P

Conrad: left-invariant and $g^{-1}fg^2 \in P$ for all f, g in P (equivalent to being locally indicable: Conrad; Brodskii, Rhemtulla-Rolfsen, N)

Definition (Question)

Let W be a nontrivial word on two letters. Say that an order is a W-order if $W(f,g) \in P$ for all f,g in P. Does there exist W such that W-orders correspond to orders with a relevant algebraic property ?

Bi-invariant: left-invariant and $g^{-1}fg \in P$ for all f, g in P

Conrad: left-invariant and $g^{-1}fg^2 \in P$ for all f, g in P (equivalent to being locally indicable: Conrad; Brodskii, Rhemtulla-Rolfsen, N)

Definition (Question)

Let W be a nontrivial word on two letters. Say that an order is a W-order if $W(f,g) \in P$ for all f,g in P. Does there exist W such that W-orders correspond to orders with a relevant algebraic property ?

A link: If an orderable group satisfies a *semigroup law*, then every order on it is Conradian (Longobardi-Maj-Rhemtulla).

A left-order \leq is *non-Conradian* iff Γ contains f, g, u, v such that $u \prec fu \prec fv \prec gu \prec gv \prec v$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A left-order \leq is *non-Conradian* iff Γ contains f, g, u, v such that $u \prec fu \prec fv \prec gu \prec gv \prec v$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A left-order \leq is *non-Conradian* iff Γ contains f, g, u, v such that $u \prec fu \prec fv \prec gu \prec gv \prec v$

Question

Given a relevant dynamical property (e.g. there are no double crossings for graphs of group elements), what is the set of orders that satisfy this property ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A left-order \leq is *non-Conradian* iff Γ contains f, g, u, v such that $u \prec fu \prec fv \prec gu \prec gv \prec v$

Question

Given a relevant dynamical property (e.g. there are no double crossings for graphs of group elements), what is the set of orders that satisfy this property ?

Remark: Existence of *N*-crossings for all *N* implies that no group identity can be satisfied ("ping-pong").

The space of orders of Γ is the set of all orders on Γ endowed with the Chabauty topology: two orders are close if they coincide over a large finite subset.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The space of orders of Γ is the set of all orders on Γ endowed with the Chabauty topology: two orders are close if they coincide over a large finite subset.

Totally-disconnected compact space.
- Totally-disconnected compact space.
- Metrizable if Γ is countable.

- Totally-disconnected compact space.
- Metrizable if Γ is countable.
- The subspaces of bi-invariant and Conradian orders are closed (perhaps empty).

- Totally-disconnected compact space.
- Metrizable if Γ is countable.
- The subspaces of bi-invariant and Conradian orders are closed (perhaps empty).

The space of orders is either finite or uncountable (Linnell).

- Totally-disconnected compact space.
- Metrizable if Γ is countable.
- The subspaces of bi-invariant and Conradian orders are closed (perhaps empty).
- The space of orders is either finite or uncountable (Linnell).
- An isolated point corresponds to an order that is determined by finitely many inequalities.

 \blacksquare The space of orders of $\mathbb Z$ is made up of two points.

 \blacksquare The space of orders of $\mathbb Z$ is made up of two points.

• The space of orders of \mathbb{Z}^2 is a Cantor set (Sikora).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \blacksquare The space of orders of $\mathbb Z$ is made up of two points.
- The space of orders of \mathbb{Z}^2 is a Cantor set (Sikora).
- The same holds for "nilpotent" (N) and "solvable" (Rivas-Tessera).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The space of orders of \mathbb{Z} is made up of two points.
- The space of orders of \mathbb{Z}^2 is a Cantor set (Sikora).
- The same holds for "nilpotent" (N) and "solvable" (Rivas-Tessera).

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへ⊙

A less trivial isolated order:

$$\Gamma := \langle a, b \colon bab = a \rangle$$

A less trivial isolated order:

$$\Gamma := \langle a, b \colon bab = a \rangle$$

$$\Gamma = \langle a, b \rangle^+ \sqcup \langle a^{-1}, b^{-1} \rangle^+ \sqcup \{ id \}$$

A less trivial isolated order:

• B_n : braid group

• B_n : braid group

Theorem (Dubrovina-Dubrovin)

 $\mathcal{LO}(B_n)$ has an isolated point coming from a decomposition

$$B_n = \langle a_1, \ldots, a_{n-1} \rangle^+ \sqcup \langle a_1^{-1}, \ldots, a_{n-1}^{-1} \rangle^+ \sqcup \{ id \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• B_n : braid group

Theorem (Dubrovina-Dubrovin)

 $\mathcal{LO}(B_n)$ has an isolated point coming from a decomposition

$$B_n = \langle a_1, \ldots, a_{n-1} \rangle^+ \sqcup \langle a_1^{-1}, \ldots, a_{n-1}^{-1} \rangle^+ \sqcup \{ id \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For
$$n = 3$$
: $a = a_1 := \sigma_1 \sigma_2$ and $b = a_2 := \sigma_2^{-1}$

• B_n : braid group

Theorem (Dubrovina-Dubrovin)

 $\mathcal{LO}(B_n)$ has an isolated point coming from a decomposition

$$B_n = \langle a_1, \ldots, a_{n-1} \rangle^+ \sqcup \langle a_1^{-1}, \ldots, a_{n-1}^{-1} \rangle^+ \sqcup \{ id \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For
$$n = 3$$
: $a = a_1 := \sigma_1 \sigma_2$ and $b = a_2 := \sigma_2^{-1}$

 $B_3 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$

• B_n : braid group

Theorem (Dubrovina-Dubrovin)

 $\mathcal{LO}(B_n)$ has an isolated point coming from a decomposition

$$B_n = \langle a_1, \ldots, a_{n-1} \rangle^+ \sqcup \langle a_1^{-1}, \ldots, a_{n-1}^{-1} \rangle^+ \sqcup \{ id \}.$$

• For
$$n = 3$$
: $a = a_1 := \sigma_1 \sigma_2$ and $b = a_2 := \sigma_2^{-1}$

 $B_3 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle a, b : ba^2 b = a \rangle$

• B_n : braid group

Theorem (Dubrovina-Dubrovin)

 $\mathcal{LO}(B_n)$ has an isolated point coming from a decomposition

$$B_n = \langle a_1, \ldots, a_{n-1} \rangle^+ \sqcup \langle a_1^{-1}, \ldots, a_{n-1}^{-1} \rangle^+ \sqcup \{ id \}.$$

• For
$$n = 3$$
: $a = a_1 := \sigma_1 \sigma_2$ and $b = a_2 := \sigma_2^{-1}$

 $B_3 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle = \langle a, b : ba^2 b = a \rangle$

$$B_3 = \langle a, b
angle^+ \sqcup \langle a^{-1}, b^{-1}
angle^+ \sqcup \{ \mathit{id} \}$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

・ロン ・雪と ・雨と

æ

・ロン ・雪と ・雨と

æ

Many new examples by N, Ito, Dehornoy.

Many new examples by N, Ito, Dehornoy.

Question

Let Γ be a finitely-generated orderable group admitting infinitely many orders and having an isolated order. Does Γ contain a free subgroup in two generators ? Is it non-amenable ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Many new examples by N, Ito, Dehornoy.

Question

Let Γ be a finitely-generated orderable group admitting infinitely many orders and having an isolated order. Does Γ contain a free subgroup in two generators ? Is it non-amenable ?

Question

Does the space of orders of Thompson's group F contain an isolated point ?

Thompson's group F admits 8 isolated bi-orders.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thompson's group F admits 8 isolated bi-orders. (The space of bi-orders is complemented by a Cantor set).

Thompson's group F admits 8 isolated bi-orders. (The space of bi-orders is complemented by a Cantor set).

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F/F' \sim \mathbb{Z}^2 \longrightarrow 0$$

Theorem (N-Rivas)

Thompson's group F admits 8 isolated bi-orders. (The space of bi-orders is complemented by a Cantor set).

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F/F' \sim \mathbb{Z}^2 \longrightarrow 0$$

Question

Is the positive cone of the standard bi-order on F finitely generated as a *normal* semigroup ?

Thompson's group F admits 8 isolated bi-orders. (The space of bi-orders is complemented by a Cantor set).

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F/F' \sim \mathbb{Z}^2 \longrightarrow 0$$

Question

Is the positive cone of the standard bi-order on F finitely generated as a *normal* semigroup ?

Question

Do pure braid groups admit isolated bi-orders ? (Rolfsen)

Thompson's group F admits 8 isolated bi-orders. (The space of bi-orders is complemented by a Cantor set).

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F/F' \sim \mathbb{Z}^2 \longrightarrow 0$$

Question

Is the positive cone of the standard bi-order on F finitely generated as a *normal* semigroup ?

Question

Do pure braid groups admit isolated bi-orders ? (Rolfsen) What about braided Thompson groups ? (Burillo - González Meneses)

Does the space of bi-orders of the free group \mathbb{F}_2 contain an isolated point ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Does the space of bi-orders of the free group \mathbb{F}_2 contain an isolated point ?

Theorem (McCleary, N; Clay, Rivas)

The space of orders of \mathbb{F}_2 contains no isolated point.

Does the space of bi-orders of the free group \mathbb{F}_2 contain an isolated point ?

Theorem (McCleary, N; Clay, Rivas)

The space of orders of \mathbb{F}_2 contains no isolated point. In particular, no positive cone can be generated by finitely many elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Does the space of bi-orders of the free group \mathbb{F}_2 contain an isolated point ?

Theorem (McCleary, N; Clay, Rivas)

The space of orders of \mathbb{F}_2 contains no isolated point. In particular, no positive cone can be generated by finitely many elements.

Theorem (Kielak)

The free group \mathbb{F}_2 is not the group of fractions of any strict finitely-generated subsemigroup.

Theorem (Morris Witte)

Finite index subgroups of $SL(n, \mathbb{Z})$, $n \ge 3$, are non-orderable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Morris Witte)

Finite index subgroups of $SL(n, \mathbb{Z})$, $n \ge 3$, are non-orderable.

Theorem (Ghys)

If Γ is a lattice in a higher-rank simple Lie group would act faithfully on the circle, then it should contain a finite-index orderable subgroup...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Morris Witte)

Finite index subgroups of $SL(n, \mathbb{Z})$, $n \ge 3$, are non-orderable.

Theorem (Ghys)

If Γ is a lattice in a higher-rank simple Lie group would act faithfully on the circle, then it should contain a finite-index orderable subgroup...

Remark: No examples in the literature of finitely-generated *simple* orderable groups (though existence was recently announced by Bludov).

Ordering large groups (?)

These higher-rank lattices satisfy Kazhdan's property (T): every action by isometries of a Hilbert space has a fixed point.
Question

Does there exist a nontrivial finitely-generated orderable Kazhdan group ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Does there exist a nontrivial finitely-generated orderable Kazhdan group ?

Diff¹₊([0,1]) contains no nontrivial Kazhdan subgroup;

Question

Does there exist a nontrivial finitely-generated orderable Kazhdan group ?

Diff¹₊([0, 1]) contains no nontrivial Kazhdan subgroup; indeed,
Diff¹₊([0, 1]) is locally indicable (W.Thurston),

Question

Does there exist a nontrivial finitely-generated orderable Kazhdan group ?

 Diff¹₊([0, 1]) contains no nontrivial Kazhdan subgroup; indeed, Diff¹₊([0, 1]) is locally indicable (W.Thurston), though this is not the only obstruction for embedding a group therein (Cantwell-Conlon, D.Calegari, N, Bonatti).

Question

Does there exist a nontrivial finitely-generated orderable Kazhdan group ?

- Diff¹₊([0, 1]) contains no nontrivial Kazhdan subgroup; indeed, Diff¹₊([0, 1]) is locally indicable (W.Thurston), though this is not the only obstruction for embedding a group therein (Cantwell-Conlon, D.Calegari, N, Bonatti).
- $\operatorname{Diff}_{+}^{3/2}(S^1)$ contains no infinite Kazhdan subgroup (N).

Some examples of non-standard torsion-free Kazhdan groups come from actions on buildings:

Example [Peyerimhoff-Vdovina]

$$\Gamma = \langle a, b \colon r_1, r_2, r_3 \rangle,$$

$$r_1 = bababab^{-3}a^{-3},$$

 $r_2 = ba^{-1}b^{-1}a^{-3}b^2a^{-1}bab,$
 $r_3 = b^3a^{-1}baba^2b^2aba.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @