An example concerning the Theory of Levels for codimension-one foliations

Andrés Navas*

An important aspect of foliations concerns the existence of local minimal sets. Recall that a foliated manifold has the LMS property if, for every open, saturated set W and every leaf $L \subset W$, the relative closure $\bar{L} \cap W$ contains a minimal set of $\left.F\right|_{W}$. A fundamental result (due to Cantwell-Conlon [2] and Duminy-Hector [5]) establishes the LMS property for codimension-one foliations that are transversely of class $C^{1+\text { Lipschitz }}$. This is the basic tool of the so-called Theory of Levels.

A classical example due to Hector (which corresponds to the suspension of a group action on the interval) shows that the LMS property is no longer true for codimension-one foliations which transversely are only continuous (see [1, Example 8.1.13]). Despite of this, in recent years, the possibility of extending some of the results of the Theory of Levels to smoothness smaller than $C^{1+\text { Lipschitz }}$ has been naturally addressed [3, 4]. In this Note we will show that, however, analogues of Hector's example appear in class C^{1} (and actually in class $C^{1+\alpha}$ for small values of α).

1 A General Construction

Let $\left(a_{n}\right)_{n \in \mathbb{Z}}$ be a sequence such that $a_{n+1}<a_{n}$ for all $n \in \mathbb{Z}, a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and $a_{n} \rightarrow 1$ as $n \rightarrow-\infty$. Let $\left(n_{k}\right)$ be a strictly increasing sequence of positive integers, and let $f:[0,1] \rightarrow[0,1]$ be a homeomorphism such that $f\left(a_{n+1}\right)=a_{n}$ for all $n \in \mathbb{Z}$. For each $k>0$, we let $u_{k}, v_{k}, b_{k}, c_{k}$ be such that $a_{n_{k}+1}<b_{k}<u_{k}<v_{k}<c_{k}<a_{n_{k}}$. For each $i \in\left\{0, \ldots, n_{k+1}-n_{k}\right\}$, we set $u_{k}^{i}:=f^{i}\left(u_{k}\right)$ and $v_{k}^{i}:=f^{i}\left(v_{k}\right)$. Notice that

$$
f^{i}\left(\left[u_{k+1}^{0}, v_{k+1}^{0}\right]\right)=\left[u_{k+1}^{i}, v_{k+1}^{i}\right] \subset f^{i}\left(\left[a_{1+n_{k+1}}, a_{n_{k+1}}\right]\right)=\left[a_{n_{k+1}-i+1}, a_{n_{k+1}-i}\right] .
$$

Now, we let $g:[0,1] \rightarrow[0,1]$ be a homeomorphism such that:
$-g=I d$ on $\left[a_{n+1}, a_{n}\right]$ for each $n<0$, as well as each $n>0$ such that $n \neq n_{k}$ for every k;
$-g=I d$ on $\left[a_{1+n_{k}}, b_{k}\right] \cup\left[c_{k}, a_{n_{k}}\right], g\left(u_{k}^{0}\right)=v_{k}^{0}$, and g has no fixed point on $] b_{k}, c_{k}[$.
Main assumption: In order that f, g generate a group of homeomorphisms of $[0,1]$ whose associated suspension does not have the LMS property, we assume that (see Figure 1)

$$
u_{k+1}^{n_{k+1}-n_{k}}=b_{k} \quad \text { and } \quad v_{k+1}^{n_{k+1}-n_{k}}=c_{k} .
$$

With these general notations, Hector's example corresponds to the choice $n_{k}=k$. We will show that, by taking $n_{k}=2^{k}$, one may perform this construction in such a way the

[^0]resulting maps f and g are diffeomorphisms of class C^{1} (actually, of class $\mathrm{C}^{1+\alpha}$ for any $\alpha<(\sqrt{5}-1) / 2)$. It is quite possible that slightly improving our method, one can smooth the action up to the class $\mathrm{C}^{2-\delta}$ for any $\delta>0$. (Compare [7], where for a similar construction, T. Tsuboi deals with the $\mathrm{C}^{3 / 2-\delta}$ case before the $\mathrm{C}^{2-\delta}$ case due to technical difficulties.)

Figure 1

2 The length of the intervals and some estimates

We let $\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|:=\lambda_{k}^{i}\left|\left[u_{k+1}, v_{k+1}\right]\right|$, where the constant $\lambda_{k}>1$ satisfies the compatibility relation

$$
\begin{equation*}
\lambda_{k}^{2^{k}}=\frac{\left|\left[u_{k+1}^{2^{k}}, v_{k+1}^{2^{k}}\right]\right|}{\left|\left[u_{k+1}, v_{k+1}\right]\right|}=\frac{\left|\left[b_{k}, c_{k}\right]\right|}{\left|\left[u_{k+1}, v_{k+1}\right]\right|} . \tag{1}
\end{equation*}
$$

Let $\varepsilon>0$ be very small (to be fixed in a while). We set:
$-\left|\left[a_{n+1}, a_{n}\right]\right|:=\frac{c_{\varepsilon}}{(1+|n|)^{1+\varepsilon}}$, where c_{ε} is chosen so that $\sum_{n \in \mathbb{Z}}\left|\left[a_{n+1}, a_{n}\right]\right|=1$;
$-\left|\left[b_{k}, c_{k}\right]\right|:=\frac{1}{2}\left|\left[a_{2^{k}+1}, a_{2^{k}}\right]\right|=\frac{c_{\varepsilon}}{2\left(1+2^{k}\right)^{1+\varepsilon}}$, where $k>0$;
$-\left|\left[u_{k}, v_{k}\right]\right|:=\left|\left[b_{k}, c_{k}\right]\right|^{1+\theta}$.
We assume that the center of $\left[a_{2^{k}+1}, a_{2^{k}}\right]$ coincides with the center of $\left[b_{k}, c_{k}\right]$ and with that of $\left[u_{k}, v_{k}\right]$. Furthermore, we assume that for each $i \in\left\{0, \ldots, 2^{k}\right\}$, the centers of $\left[u_{k+1}^{i}, v_{k+1}^{i}\right]$ and $\left[a_{2^{k+1}-i+1}, a_{2^{k+1}-i}\right]$ coincide.

For the estimates concerning regularity, we will strongly use the following lemma from [6].

Technical Lemma. Let $\omega:[0, \eta] \rightarrow[0, \omega(\eta)]$ be a function (modulus of continuity) such that $s \mapsto s / \omega(s)$ is non-increasing. If I, J are closed non-degenerate intervals such that $1 / 2 \leq|I| /|J| \leq 2$ and

$$
\left|\frac{|J|}{|I|}-1\right| \frac{1}{\omega(|I|)} \leq M,
$$

then there exists a $\mathrm{C}^{1+\omega}$ diffeomorphism $f: I \rightarrow J$ that is tangent to the identity at the endpoints and whose derivative has ω-norm bounded from above by $6 \pi M$.

Actually, for $I:=[a, b]$ and $J:=\left[a^{\prime}, b^{\prime}\right]$, one may take $f=\varphi_{a^{\prime}, b^{\prime}}^{-1} \circ \varphi_{a, b}$, where $\varphi_{a, b}$ is defined
by (a similar definition stands for $\varphi_{a^{\prime}, b^{\prime}}$)

$$
\varphi_{a, b}(x)=-\frac{1}{(b-a)} \operatorname{ctg}\left(\pi\left(\frac{x-a}{b-a}\right)\right) .
$$

The condition on the derivative at the endpoints allows us to fit together the maps in order to create a diffeomorphism of a larger interval. Actually, if all of the involved sub-intervals of type I, J satisfy the hypothesis of the lemma above for the same constant M, then the ω-norm of the derivative of the induced diffeomorphism is bounded from above by $12 \pi M$.

In what follows, we will deal with the modulus of continuity $\omega(s)=s^{\alpha}$ for the derivative, where $\alpha>0$. A constant depending on the three parameters $\alpha, \theta, \varepsilon$, and whose value is irrelevant for our purposes, will be generically denoted by M.

Estimates for f : The diffeomorphism f is constructed by fitting together the maps provided by the Technical Lemma sending (see Figure 2):
(i) $\left[u_{k+1}^{i}, v_{k+1}^{i}\right]$ into $\left[u_{k+1}^{i+1}, v_{k+1}^{i+1}\right]$,
(ii) $\left[a_{2^{k+1}-i}, u_{k+1}^{i}\right]$ into $\left[a_{2^{k+1}-i-1}, u_{k+1}^{i+1}\right]$,
(iii) $\left[v_{k+1}^{i}, a_{2^{k+1}-i-1}\right]$ into $\left[v_{k+1}^{i+1}, a_{2^{k+1-i-2}}\right]$.

For (i), we have

$$
\left|\frac{\left|\left[u_{k+1}^{i+1}, v_{k+1}^{i+1}\right]\right|}{\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|}-1\right| \frac{1}{\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|^{\alpha}}=\left|\lambda_{k}-1\right| \frac{1}{\left(\lambda_{k}^{i}\left|\left[u_{k+1}^{0}, v_{k+1}^{0}\right]\right|\right)^{\alpha}} \leq\left|\lambda_{k}-1\right| \frac{1}{\left|\left[b_{k+1}, c_{k+1}\right]\right|^{(1+\theta) \alpha}} .
$$

Now from (1) one obtains

$$
\lambda_{k}^{2^{k}}=\frac{\frac{c_{\varepsilon}}{2\left(1+2^{k}\right)^{1+\varepsilon}}}{\left(\frac{c^{1}}{2\left(1+2^{k+1}\right)^{1+\varepsilon}}\right)^{1+\theta}} \leq M\left(\frac{\left(1+2^{k+1}\right)^{1+\theta}}{1+2^{k}}\right)^{1+\varepsilon} \leq M 2^{k \theta(1+\varepsilon)} .
$$

From the inequality $\left|2^{\alpha}-1\right| \leq \alpha$ (which holds for α positive and small) one concludes that

$$
\left|\lambda_{k}-1\right| \leq M \frac{k}{2^{k}}
$$

On the other hand,

$$
\frac{1}{\left|\left[b_{k+1}, c_{k+1}\right]\right|} \leq M\left(1+2^{k+1}\right)^{1+\varepsilon} \leq M 2^{k(1+\varepsilon)} .
$$

Therefore,

$$
\begin{equation*}
\left|\frac{\left|\left[u_{k+1}^{i+1}, v_{k+1}^{i+1}\right]\right|}{\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|}-1\right| \frac{1}{\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|^{\alpha}} \leq M \frac{k}{2^{k}} 2^{k(1+\varepsilon)(1+\theta) \alpha} . \tag{2}
\end{equation*}
$$

Figure 2

Now, for (ii), set $A:=\left|\left[u_{k+1}^{i}, v_{k+1}^{i}\right]\right|, B:=\left|\left[a_{2^{k+1}-i}, a_{2^{k+1}-i-1}\right]\right|, C:=\left|\left[u_{k+1}^{i+1}, v_{k+1}^{i+1}\right]\right|$, and $D:=\left|\left[a_{2^{k+1}-i-1}, a_{2^{k+1}-i-2}\right]\right|$. Then

$$
\left|\frac{\left|\left[a_{2^{k+1}-i-1}, u_{k+1}^{i+1}\right]\right|}{\left|\left[a_{2^{k+1}-i}, u_{k+1}^{i}\right]\right|}-1\right| \frac{1}{\left|\left[a_{2^{k+1}-i}, u_{k+1}^{i}\right]\right|^{\alpha}}=\left|\frac{D-C}{B-A}-1\right| \frac{2^{\alpha}}{(B-A)^{\alpha}} .
$$

Moreover, since $A \leq B / 2$ and $C=\lambda_{k} A$,

$$
\begin{aligned}
\left|\frac{D-C}{B-A}-1\right| & \leq\left|\frac{D-B}{B-A}\right|+\left|\frac{C-A}{B-A}\right| \leq 2\left|\frac{D-B}{B}\right|+\left|\lambda_{k}-1\right| \\
& =\frac{M}{B}\left[\frac{1}{\left(2^{k+1}-i-2\right)^{1+\varepsilon}}-\frac{1}{\left(2^{k+1}-i-1\right)^{1+\varepsilon}}\right]+M \frac{k}{2^{k}} \\
& \leq M B\left[\left(2^{k+1}-i-1\right)^{1+\varepsilon}-\left(2^{k+1}-i-2\right)^{1+\varepsilon}\right]+M \frac{k}{2^{k}} \\
& \leq \frac{M}{2^{k(1+\varepsilon} 2^{k \varepsilon}}+M \frac{k}{2^{k}} \\
& \leq M \frac{k}{2^{k}} .
\end{aligned}
$$

Therefore,

$$
\left|\frac{D-C}{B-A}-1\right| \frac{2^{\alpha}}{(B-A)^{\alpha}} \leq M \frac{k}{2^{k}} 2^{k(1+\varepsilon) \alpha},
$$

hence

$$
\begin{equation*}
\left|\frac{\left|\left[a_{2^{k+1}-i-1}, u_{k+1}^{i+1}\right]\right|}{\left|\left[a_{2^{k+1}-i}, u_{k+1}^{i}\right]\right|}-1\right| \frac{1}{\left|\left[a_{2^{k+1}-i}, u_{k+1}^{i}\right]\right|^{\alpha}} \leq M \frac{k}{2^{k(1-(1+\varepsilon) \alpha)}} . \tag{3}
\end{equation*}
$$

Finally, notice that by construction, the estimates for (iii) are the same as those for (ii).
Estimates for g : The diffeomorphism g is obtained by fitting together the maps provided by the Technical Lemma sending:
(i) $\left[b_{k}, u_{k}^{0}\right]$ into $\left[b_{k}, v_{k}^{0}\right]$,
(ii) $\left[u_{k}^{0}, c_{k}\right]$ into $\left[v_{k}^{0}, c_{k}\right]$,
(iii) $\left[a_{2^{k}+1}, b_{k}\right]$ and $\left[c_{k}, a_{2^{k}}\right]$ into themselves as the identity.

For (i), notice that

$$
\left|\frac{\mid\left[b_{k}, v_{k}^{0} \mid\right.}{\left[b_{k}, u_{k}^{0}\right]}-1\right| \frac{1}{\left|\left[b_{k}, u_{k}^{0}\right]\right|^{\alpha}}=\frac{\left|\left[u_{k}^{0}, v_{k}^{0}\right]\right|}{\left|\left[b_{k}, u_{k}^{0}\right]\right|^{1+\alpha}} \leq \frac{2^{1+\alpha}\left|\left[u_{k}^{0}, v_{k}^{0}\right]\right|}{\left(\left|\left[b_{k}, c_{k}\right]\right|-\left|\left[u_{k}^{0}, v_{k}^{0}\right]\right|\right)^{1+\alpha}}=\frac{2^{1+\alpha}\left|\left[b_{k}, c_{k}\right]\right|^{1+\theta}}{\left(\left|\left[b_{k}, c_{k}\right]\right|-\left|\left[b_{k}, c_{k}\right]\right|^{1+\theta}\right)^{1+\alpha}},
$$

thus

$$
\begin{equation*}
\left|\frac{\left|\left[b_{k}, v_{k}^{0}\right]\right|}{\left[b_{k}, u_{k}^{0}\right]}-1\right| \frac{1}{\mid\left[b_{k}, u_{k}^{0}\right]^{\alpha}} \leq M\left|\left[b_{k}, c_{k}\right]\right|^{\theta-\alpha} . \tag{4}
\end{equation*}
$$

The estimates for (ii) are similar to those for (i) and we leave them to the reader.
The choice of the parameters: According to our Technical Lemma, and due to (2), (3), and (4), sufficient conditions for the $\mathrm{C}^{1+\alpha}$ smoothness of f, g are:
$-(1+\varepsilon)(1+\theta) \alpha<1$,
$-\frac{1}{1+\varepsilon}>\alpha$
$-\theta>\alpha$.
Now, for $0<\alpha<(\sqrt{5}-1) / 2$, one easily checks that these conditions are satisfied for $\theta:=\alpha+\varepsilon$, where $\varepsilon>0$ is small enough so that $(1+\varepsilon)(1+\alpha+\varepsilon) \alpha<1$.

Acknowledgments. I would like to thank J. Cantwell and L. Conlon for motivating me to work on and write out the example of this Note.

References

[1] Candel, A. \& Conlon, L. Foliations, I. American Mathematical Society, Providence, Rhode Island (1999).
[2] Cantwell, J. \& Conlon, L. Poincaré-Bendixson theory for leaves of codimension-one. Trans. Amer. Math. Soc. 265 (1981), 181-209.
[3] Cantwell, J. \& Conlon, L. A new look at the Theory of Levels. In: A celebration of the mathematical legacy of Raoul Bott. CRM Proc. Lecture Notes 50, Amer. Math. Soc., Providence, RI (2010), 125-137.
[4] Deroin, B., Kleptsyn, V. \& Navas, A. Sur la dynamique unidimensionnelle en régularité intermédiaire. Acta Math. 199 (2007), 199-262.
[5] Hector, G. Architecture des feuilletages de classe C^{2}. Astérisque 107-108 (1983), 243258.
[6] Navas, A. Growth of groups and diffeomorphisms of the interval. Geom. and Functional Analysis 18 (2008), 988-1028.
[7] Tsuboi, T. Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle. J. Math. Soc. Japan 47 (1995), 1-30.

Andrés Navas
Univ. de Santiago de Santiago Alameda 3363, Santiago, Chile
email: andres.navas@usach.cl

[^0]: *Partially funded by the Math-AMSUD Project DySET.

