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Main references

This is essentially a joint work with Michele Triestino (ENS-Lyon):

[NT, 2012] On the invariant distributions of C 2 circle diffeomor-
phisms with irrational rotation number.

Remarks and related results by/with S. Crovisier and V. Kleptsyn
will also be discussed.
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Invariant distributions

• A probability measure is a point in the dual of the space of con-
tinuous functions. (Duality is realized by integration.)

• Given a manifold M, a k-distribution on M is a point in the dual
space of C k(M).

• A k-distribution L is invariant under a C k ′
diffeomorphism

f : M → M, with k ′ ≥ k , if for all ϕ ∈ C k(M):

L(ϕ) = L(ϕ ◦ f ).
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An example

Assume that x0 ∈ M (1-dimensional) is such that∑
n∈Z

Df n(x0) <∞.

Then
ϕ 7→

∑
n∈Z

Dϕ(f n(x0)) · Df n(x0)

defines an invariant 1-distribution.

This situation arises for hyperbolic-like dynamics. Hence, it is
natural to first deal with elliptic-like dynamics...
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A theorem by A. Avila and A. Kocsard

Theorem
If f is a C∞ circle diffeomorphism with irrational rotation number,
then f admits no invariant distribution other than (multiples of)
the (unique) invariant measure.

In dual form:

Theorem
For every C k function ϕ : S1 → S1 having zero mean with respect
to the f -invariant measure, there exists a sequence of C k functions
ψn : S1 → S1 such that

ψn ◦ f − ψn −→ ϕ

in the C k topology.
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Main Results

Theorem
If f is a C 1+bv circle diffeomorphism of irrational rotation number,
then f carries no invariant 1-distribution other than the invariant
measure.

Theorem
The theorem above is sharp in what concerns regularity of f . More
precisely, there are C 1 “counterexamples” f that:
– preserve an invariant Cantor set (Denjoy,...); these can be made
C 1+α for all α < 1.
– are minimal (Kodama-Matsumoto); remains unknown in class
C 1+α.
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An Equidistribution Theorem

Theorem
If f ∈ C 1+bv and ϕ is of class C 1, then (for α ∼ pn

qn
)

Sqn(ϕ)− qn

∫
S1
ϕdµ −→ 0.

Recall:

Sn(ϕ)

n
−→

∫
S1
ϕdµ, ϕ continuous (Weyl-Birkhoff)

∣∣∣∣Sqn(ϕ)− qn

∫
S1
ϕdµ

∣∣∣∣ ≤ var(ϕ), ϕ ∈ Cbv (Denjoy-Koksma)
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Another consequence

Theorem
If f is a C 2 circle diffeomorphism with irrational rotation number,
then f qn converges to the identity in the C 1 topology (M.Herman).

Proof. Apply the Equidistribution Theorem to ϕ := log(Df ) ∈ C 1.
Since ∫

S1
log(Df )dµ = 0,

we get
log(Df qn) = Sqn(log(Df )) −→ 0.

Since f qn → id in the C 0 topology (Denjoy), we must have
f qn → id in the C 1 topology.
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Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that ϕ has zero mean with
respect to the invariant measure.

• Let ψm be such that ψm ◦ f − ψm −→ ϕ in the C 1 topology.
Then:

Sqn(ϕ) = Sqn(ϕ− [ψm ◦ f − ψm]) + Sqn(ψm ◦ f − ψm)

= Sqn(ϕ− [ψm ◦ f − ψm]) + ψm ◦ f qn − ψm.

Hence,

|Sqn(ϕ)| ≤ |Sqn(ϕ− [ψm ◦ f − ψm])|+ |ψm ◦ f qn − ψm|
≤ var(ϕ− [ψm ◦ f − ψm]) + |ψm ◦ f qn − ψm|
≤ ‖ϕ− [ψm ◦ f − ψm]‖C1 + |ψm ◦ f qn − ψm|.
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Proof of the Main Theorem I

An argument that doesn’t work:

take

ψn := −1

n

n−1∑
i=0

Si (ϕ).

Then (remarkable identity)

ψn ◦ f − ψn = ϕ− Sn(ϕ)

n

Hence, if ϕ has zero mean, then ψn yields the desired approxi-
mation of ϕ by coboundaries in the C 0 topology.
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Proof of the Main Theorem II

But: for generic ϕ, the derivative of ψn ◦ f − ψn exploses.

However, for ϕ(x) := f (x)− x , this works, provided f ∈ C 1+bv .
Indeed, the previous identity becomes

ψn ◦ f − ψn = ϕ− f n(x)− x

n

and the derivative of the term f qm (x)−x
qm

converges to zero as
m→∞, because of Denjoy’s inequality.



References General framework Statement of results Proofs Extensions and questions

Proof of the Main Theorem II

But: for generic ϕ, the derivative of ψn ◦ f − ψn exploses.

However, for ϕ(x) := f (x)− x , this works, provided f ∈ C 1+bv .

Indeed, the previous identity becomes

ψn ◦ f − ψn = ϕ− f n(x)− x

n

and the derivative of the term f qm (x)−x
qm

converges to zero as
m→∞, because of Denjoy’s inequality.



References General framework Statement of results Proofs Extensions and questions

Proof of the Main Theorem II

But: for generic ϕ, the derivative of ψn ◦ f − ψn exploses.

However, for ϕ(x) := f (x)− x , this works, provided f ∈ C 1+bv .
Indeed, the previous identity becomes

ψn ◦ f − ψn = ϕ− f n(x)− x

n

and the derivative of the term f qm (x)−x
qm

converges to zero as
m→∞, because of Denjoy’s inequality.



References General framework Statement of results Proofs Extensions and questions

Proof of the Main Theorem III

A very simple idea: if we wish to C 1-approximate ϕ by functions of
the form ψ ◦ f − ψ, then Dϕ should be C 0-approximable by
functions of the form ξ ◦ f · Df − ξ. (Namely, for ξ = Dψ.)

• Key Fact: This C 0-approximation follows from the fact that∫
Dϕ = 0 using the work of R. Douady,J.-C.Yoccoz / A.Katok.

• If the functions ξ had zero mean (Leb), this would solve the
problem (just by integration).

• Otherwise, just substract the integral of ξ...
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Proof of the Main Theorem IV

End of the proof: let cn :=
∫
ξn for ξn such that

ξn ◦ f · Df − ξn −→ Dϕ.

Then

(ξn − cn) ◦ f · Df − (ξn − cn) + cn(Df − 1) −→ Dϕ.

Now recall: ψqm ◦ f − ψqm −→ f (x)− x in C 1, hence

Dψqm ◦ f · Df − Dψqm −→ D(f (x)− x) = Df (x)− 1

Thus,

(ξn − cn + cnDψqm) ◦ f · Df − (ξn − cn + cnDψqm) −→ Dϕ.
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Proof of the Key Fact

Theorem
If
∫

Φ = 0, then Φ can be C 0 approximated by functions of the
form ξ ◦ f · Df − ξ.

This result is the dual statement of the fact that there are no
f -conformal measures other than the Lebesgue measure (which is a
result due to Douady,Yoccoz/Katok).

Definition
A measure ν is f -conformal if for every continuous function Ψ:∫

Ψ ◦ f · Df dν =

∫
Ψ dν.
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Group actions

For (finitely-generated) group actions by circle diffeomorphisms
without invariant measure, there should be no invariant distribu-
tion. This is well established in some cases (real-analytic, free
groups), and follows (among others) from recent works with Deroin
and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure.
(Exceptional minimal sets have zero Lebesgue measure.)

- There are no conformal measure other than Leb...
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Conjugacies

The twisted cohomological equation is closely related to the next

Question
Let f be a C 2 (even C∞) circle diffeomorphism of irrational
rotation number. Can f be C 2-conjugated to diffeomorphisms
arbitrarily C 2-close to the corresponding rotation ?

In class C 1, this is known and easy: just use the Cohomological
Identity for log(Df ).

Less trivial is that such a method works for
nilpotent groups:

Theorem
Every C 1 action of a nilpotent group on S1 (resp. [0,1]) is topo-
logically conjugated to actions arbitrarily C 1-close to actions by
rotations (resp. the trivial action).
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MANY THANKS
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