References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On invariant distributions of circle diffeomorphisms and a equidistribution theorem for smooth potentials

Andrés Navas

Univ. de Santiago de Chile

Bedlewo, June 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main references

This is essentially a joint work with Michele Triestino (ENS-Lyon):

[NT, 2012] On the invariant distributions of C^2 circle diffeomorphisms with irrational rotation number.

Remarks and related results by/with S. Crovisier and V. Kleptsyn will also be discussed.

Invariant distributions

- A probability measure is a point in the dual of the space of continuous functions. (Duality is realized by integration.)
- Given a manifold M, a k-distribution on M is a point in the dual space of $C^k(M)$.
- A k-distribution L is invariant under a $C^{k'}$ diffeomorphism $f: M \to M$, with $k' \ge k$, if for all $\varphi \in C^k(M)$:

$$L(\varphi) = L(\varphi \circ f).$$

Extensions and questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example

Assume that $x_0 \in M$ (1-dimensional) is such that

$$\sum_{n\in\mathbb{Z}}Df^n(x_0)<\infty.$$

Then

$$\varphi \mapsto \sum_{n \in \mathbb{Z}} D\varphi(f^n(x_0)) \cdot Df^n(x_0)$$

defines an invariant 1-distribution.

Extensions and questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example

Assume that $x_0 \in M$ (1-dimensional) is such that

$$\sum_{n\in\mathbb{Z}}Df^n(x_0)<\infty.$$

Then

$$\varphi \mapsto \sum_{n \in \mathbb{Z}} D\varphi(f^n(x_0)) \cdot Df^n(x_0)$$

defines an invariant 1-distribution.

This situation arises for hyperbolic-like dynamics. Hence, it is natural to first deal with elliptic-like dynamics...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A theorem by A. Avila and A. Kocsard

Theorem

If f is a C^{∞} circle diffeomorphism with irrational rotation number, then f admits no invariant distribution other than (multiples of) the (unique) invariant measure.

A theorem by A. Avila and A. Kocsard

Theorem

If f is a C^{∞} circle diffeomorphism with irrational rotation number, then f admits no invariant distribution other than (multiples of) the (unique) invariant measure.

In dual form:

Theorem

For every C^k function $\varphi: S^1 \to S^1$ having zero mean with respect to the *f*-invariant measure, there exists a sequence of C^k functions $\psi_n: S^1 \to S^1$ such that

$$\psi_{\mathbf{n}} \circ \mathbf{f} - \psi_{\mathbf{n}} \longrightarrow \varphi$$

in the C^k topology.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main Results

Theorem

If f is a C^{1+bv} circle diffeomorphism of irrational rotation number, then f carries no invariant 1-distribution other than the invariant measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main Results

Theorem

If f is a C^{1+bv} circle diffeomorphism of irrational rotation number, then f carries no invariant 1-distribution other than the invariant measure.

Theorem

The theorem above is sharp in what concerns regularity of f. More precisely, there are C^1 "counterexamples" f that:

– preserve an invariant Cantor set (Denjoy,...); these can be made ${\cal C}^{1+\alpha}$ for all $\alpha < 1.$

– are minimal (Kodama-Matsumoto); remains unknown in class $C^{1+\alpha}$.

Extensions and questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An Equidistribution Theorem

Theorem If $f \in C^{1+bv}$ and φ is of class C^1 , then (for $\alpha \sim \frac{p_n}{q_n}$)

$$S_{q_n}(\varphi) - q_n \int_{\mathrm{S}^1} \varphi d\mu \longrightarrow 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An Equidistribution Theorem

Theorem
If
$$f \in C^{1+b\nu}$$
 and φ is of class C^1 , then (for $\alpha \sim \frac{p_n}{q_n}$)
 $S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \longrightarrow 0.$

Recall:

$$\frac{S_n(\varphi)}{n} \longrightarrow \int_{\mathrm{S}^1} \varphi d\mu, \quad \varphi \text{ continuous (Weyl-Birkhoff)}$$

Extensions and questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An Equidistribution Theorem

Theorem
If
$$f \in C^{1+b\nu}$$
 and φ is of class C^1 , then (for $\alpha \sim \frac{p_n}{q_n}$)
 $S_{q_n}(\varphi) - q_n \int_{S^1} \varphi d\mu \longrightarrow 0.$

Recall:

$$rac{S_n(arphi)}{n} \longrightarrow \int_{\mathrm{S}^1} arphi d\mu, \quad arphi ext{ continuous (Weyl-Birkhoff)}$$

 $\left|S_{q_n}(arphi) - q_n \int_{\mathrm{S}^1} arphi d\mu
ight| \le \operatorname{var}(arphi), \quad arphi \in C^{bv} ext{ (Denjoy-Koksma)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Another consequence

Theorem

If f is a C^2 circle diffeomorphism with irrational rotation number, then f^{q_n} converges to the identity in the C^1 topology (M.Herman).

Another consequence

Theorem

If f is a C^2 circle diffeomorphism with irrational rotation number, then f^{q_n} converges to the identity in the C^1 topology (M.Herman).

Proof. Apply the Equidistribution Theorem to $\varphi := \log(Df) \in C^1$. Since

$$\int_{\mathrm{S}^1} \log(Df) d\mu = 0,$$

we get

$$\log(Df^{q_n}) = S_{q_n}(\log(Df)) \longrightarrow 0.$$

Since $f^{q_n} \to id$ in the C^0 topology (Denjoy), we must have $f^{q_n} \to id$ in the C^1 topology.

•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that φ has zero mean with respect to the invariant measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that φ has zero mean with respect to the invariant measure.

• Let ψ_m be such that $\psi_m \circ f - \psi_m \longrightarrow \varphi$ in the C^1 topology. Then:

$$S_{q_n}(\varphi) = S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + S_{q_n}(\psi_m \circ f - \psi_m)$$

= $S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + \psi_m \circ f^{q_n} - \psi_m.$

Proof of the Equidistribution Theorem

• First, w.l.g., we can (and will) assume that φ has zero mean with respect to the invariant measure.

• Let ψ_m be such that $\psi_m \circ f - \psi_m \longrightarrow \varphi$ in the C^1 topology. Then:

$$S_{q_n}(\varphi) = S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + S_{q_n}(\psi_m \circ f - \psi_m)$$

= $S_{q_n}(\varphi - [\psi_m \circ f - \psi_m]) + \psi_m \circ f^{q_n} - \psi_m.$

Hence,

$$\begin{aligned} |S_{q_n}(\varphi)| &\leq |S_{q_n}(\varphi - [\psi_m \circ f - \psi_m])| + |\psi_m \circ f^{q_n} - \psi_m| \\ &\leq \operatorname{var}(\varphi - [\psi_m \circ f - \psi_m]) + |\psi_m \circ f^{q_n} - \psi_m| \\ &\leq ||\varphi - [\psi_m \circ f - \psi_m]||_{C^1} + |\psi_m \circ f^{q_n} - \psi_m|. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Extensions and questions

Proof of the Main Theorem I

An argument that doesn't work:

Extensions and questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of the Main Theorem I

An argument that doesn't work: take

$$\psi_n := -\frac{1}{n} \sum_{i=0}^{n-1} S_i(\varphi).$$

Extensions and questions

Proof of the Main Theorem I

An argument that doesn't work: take

$$\psi_n := -\frac{1}{n} \sum_{i=0}^{n-1} S_i(\varphi).$$

Then (remarkable identity)

$$\psi_n \circ f - \psi_n = \varphi - \frac{S_n(\varphi)}{n}$$

Hence, if φ has zero mean, then ψ_n yields the desired approximation of φ by coboundaries in the C^0 topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of the Main Theorem II

But: for generic φ , the derivative of $\psi_n \circ f - \psi_n$ exploses.

Proof of the Main Theorem II

But: for generic φ , the derivative of $\psi_n \circ f - \psi_n$ exploses.

However, for $\varphi(x) := f(x) - x$, this works, provided $f \in C^{1+bv}$.

Proof of the Main Theorem II

But: for generic φ , the derivative of $\psi_n \circ f - \psi_n$ exploses.

However, for $\varphi(x) := f(x) - x$, this works, provided $f \in C^{1+bv}$. Indeed, the previous identity becomes

$$\psi_n \circ f - \psi_n = \varphi - \frac{f^n(x) - x}{n}$$

and the derivative of the term $\frac{f^{q_m}(x)-x}{q_m}$ converges to zero as $m \to \infty$, because of Denjoy's inequality.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of the Main Theorem III

A very simple idea: if we wish to C^1 -approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0 -approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

Proof of the Main Theorem III

A very simple idea: if we wish to C^1 -approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0 -approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

• Key Fact: This C^0 -approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A.Katok.

Proof of the Main Theorem III

A very simple idea: if we wish to C^1 -approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0 -approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

• Key Fact: This C^0 -approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A.Katok.

• If the functions ξ had zero mean (Leb), this would solve the problem (just by integration).

Proof of the Main Theorem III

A very simple idea: if we wish to C^1 -approximate φ by functions of the form $\psi \circ f - \psi$, then $D\varphi$ should be C^0 -approximable by functions of the form $\xi \circ f \cdot Df - \xi$. (Namely, for $\xi = D\psi$.)

- Key Fact: This C^0 -approximation follows from the fact that $\int D\varphi = 0$ using the work of R. Douady, J.-C. Yoccoz / A.Katok.
- If the functions ξ had zero mean (Leb), this would solve the problem (just by integration).
- Otherwise, just substract the integral of ξ ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of the Main Theorem IV

End of the proof: let $c_n := \int \xi_n$ for ξ_n such that

 $\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of the Main Theorem IV

End of the proof: let $c_n := \int \xi_n$ for ξ_n such that

$$\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.$$

Then

$$(\xi_n - c_n) \circ f \cdot Df - (\xi_n - c_n) + c_n(Df - 1) \longrightarrow D\varphi.$$

・ロト・日本・モト・モート ヨー うへで

Proof of the Main Theorem IV

End of the proof: let
$$c_n := \int \xi_n$$
 for ξ_n such that

$$\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.$$

Then

$$(\xi_n-c_n)\circ f\cdot Df-(\xi_n-c_n)+c_n(Df-1)\longrightarrow D\varphi.$$

Now recall: $\psi_{q_m} \circ f - \psi_{q_m} \longrightarrow f(x) - x$ in C^1 , hence

$$D\psi_{q_m} \circ f \cdot Df - D\psi_{q_m} \longrightarrow D(f(x) - x) = Df(x) - 1$$

・ロト・日本・モト・モート ヨー うへで

Proof of the Main Theorem IV

End of the proof: let
$$c_n := \int \xi_n$$
 for ξ_n such that

$$\xi_n \circ f \cdot Df - \xi_n \longrightarrow D\varphi.$$

Then

$$(\xi_n - c_n) \circ f \cdot Df - (\xi_n - c_n) + c_n(Df - 1) \longrightarrow D\varphi.$$

Now recall: $\psi_{q_m} \circ f - \psi_{q_m} \longrightarrow f(x) - x$ in C^1 , hence

$$D\psi_{q_m} \circ f \cdot Df - D\psi_{q_m} \longrightarrow D(f(x) - x) = Df(x) - 1$$

Thus,

$$(\xi_n - c_n + c_n D\psi_{q_m}) \circ f \cdot Df - (\xi_n - c_n + c_n D\psi_{q_m}) \longrightarrow D\varphi.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Proof of the Key Fact

Theorem

If $\int \Phi = 0$, then Φ can be C^0 approximated by functions of the form $\xi \circ f \cdot Df - \xi$.

Proof of the Key Fact

Theorem

If $\int \Phi = 0$, then Φ can be C^0 approximated by functions of the form $\xi \circ f \cdot Df - \xi$.

This result is the dual statement of the fact that there are no f-conformal measures other than the Lebesgue measure (which is a result due to Douady, Yoccoz/Katok).

Proof of the Key Fact

Theorem

If $\int \Phi = 0$, then Φ can be C^0 approximated by functions of the form $\xi \circ f \cdot Df - \xi$.

This result is the dual statement of the fact that there are no f-conformal measures other than the Lebesgue measure (which is a result due to Douady, Yoccoz/Katok).

Definition

A measure ν is *f*-conformal if for every continuous function Ψ :

$$\int \Psi \circ f \cdot Df \ d\nu = \int \Psi \ d\nu.$$

Statement of results

Proofs

Extensions and questions

Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn: Statement of results

Proofs

Extensions and questions

Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure.

Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure. (Exceptional minimal sets have zero Lebesgue measure.)

Group actions

For (finitely-generated) group actions by circle diffeomorphisms without invariant measure, there should be no invariant distribution. This is well established in some cases (real-analytic, free groups), and follows (among others) from recent works with Deroin and Kleptsyn, as well as the work of Filimonov and Kleptsyn:

- Minimal actions are ergodic with respect to the ergodic measure. (Exceptional minimal sets have zero Lebesgue measure.)

- There are no conformal measure other than Leb...

Conjugacies

The twisted cohomological equation is closely related to the next

Question

Let f be a C^2 (even C^{∞}) circle diffeomorphism of irrational rotation number. Can f be C^2 -conjugated to diffeomorphisms arbitrarily C^2 -close to the corresponding rotation ?

In class C^1 , this is known and easy: just use the Cohomological Identity for log(Df).

Conjugacies

The twisted cohomological equation is closely related to the next

Question

Let f be a C^2 (even C^{∞}) circle diffeomorphism of irrational rotation number. Can f be C^2 -conjugated to diffeomorphisms arbitrarily C^2 -close to the corresponding rotation ?

In class C^1 , this is known and easy: just use the Cohomological Identity for log(Df). Less trivial is that such a method works for nilpotent groups:

Theorem

Every C^1 action of a nilpotent group on S^1 (resp. [0,1]) is topologically conjugated to actions arbitrarily C^1 -close to actions by rotations (resp. the trivial action).

References

General framework

Statement of results

Proofs

Extensions and questions

MANY THANKS