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Groups

“Les mathématiques ne sont qu’une histoire de groupes”
(Poincaré).

A group is a set endowed with a multiplication and an inversion sa-
tisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a cer-
tain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements
that differ by (right) multiplication
by a generator.



Groups
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A group is a set endowed with a multiplication and an inversion sa-
tisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a cer-
tain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements
that differ by (right) multiplication
by a generator.



Groups
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Full symmetry groups

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a
certain graph. (There are uncountably many such graphs for any
prescribed group.)
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A General Principle

If a group (class of groups) acts nicely on a

nice space, then the action should reveal so-

me algebraic structure ( nice theorem).



Groups acting on the Cantor set

Every group Γ acts on {0, 1}Γ by shifting coordinates. For infinite
countable Γ, this is a Cantor set. This action is not innocuous.

The group of piecewise dyadic homeomorphisms of the binary Can-
tor set is finitely presented and simple (Thompson’s group V ). It
contains a copy of every finite group. Every automorphism is inner
(Bleak, Lanoue, Yonah; N).
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R.Thompson’s groups

• The elements of V that respect the cyclic order form the sub-
group T ; this may be seen also as a group of piecewise-affine,
orientation-preserving homeomorphisms of the circle.

• The elements of T that respect the linear order form the sub-
group F ; this may be seen also as a group of piecewise-affine,
orientation-preserving homeomorphisms of the unit interval.

F =
〈
f , g : [fg−1, f −1gf ] = [fg−1, f −2gf 2] = id
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Topological full groups

Given a homeomorphism f of the Cantor set, its full topological
group is the group of homeomorphisms of the Cantor set that are
local restrictions of (positive, trivial or negative) powers of f .

Theorem (Matui, Grigorchuk-Medynets, Juschenko-Monod)

If f is minimal, then the commutator subgroup of its full topolo-
gical group is finitely generated, amenable, and simple.

Recall that a group is amenable if all its actions by homeomor-
phisms of compact metric spaces preserve a probability measure.
Such a group cannot contain free subgroups.
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The Burnside groups

Question (Burnside)

Let Γ be a finitely-generated group in which every element has fi-
nite order (perhaps uniformly bounded). Is Γ necessarily finite ?

• YES for linear groups (Burnside).

• The Burnside groups:

B(n) := 〈a, b : wn = id for all w〉

- B(2),B(3),B(4) and B(6) are finite.

- B(7) should be infinite (hyperbolic; obvious for Gromov).

- B(5) should still be infinite (Zelmanov).

- For odd n>666, B(n) is infinite (non-amenable; Adian-Novikov).
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A basic question in dimension 2

Question (Farb)

Let Γ ⊂ Homeo+(S2) be a finitely-generated group in which every
element has finite (uniformly bounded) order. Must Γ be finite ?

• For Homeo+(S1), the answer is affirmative (exercise).

• According to a theorem of Kerékjártó (based on the work of
Brouwer), every finite-order homeomorphism of the sphere is
conjugate to a rotation.
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Groups acting on 1-dimensional manifolds

Algebraic description of groups that act faithfully by orientation-
preserving homeomorphisms:

– of the real line: such an action comes from a left-order (folklore).

– of the circle without a finite orbit: such an action comes from a
bounded-cohomology class with coefficients in Z having a repre-
sentative taking only the values 0 and 1 (Poincaré-Ghys).

Question

Does there exist an algebraic characterization of groups that do act
faithfully by homeomorphisms of a certain 2-manifold ?
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Ordering braids

Bn = 〈σ1, . . . , σn−1: σiσi+1σi =σi+1σiσi+1, σiσj =σjσi if |i − j | > 1〉

Theorem (Dehornoy; Nielsen-Thurston)

The braid group Bn is left-orderable.

An element is “positive” if it may be written as a word in the gene-
rators such that the generator σi with smallest index i that appears
is raised only to positive exponents (ex: σ2σ

7
4σ

2
2σ
−500
3 ).
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Finitely determined orders

Question (Rolfsen)

Is the Dehornoy order on Bn finitely determined ?

Braid groups do support finitely determined orders (Dubrovina-
Dubrovin). These come from decompositions of the form

Bn = 〈a1, . . . , an−1〉+ t 〈a−1
1 , . . . , a−1

n−1〉+ t {id}.

a
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Some questions/results concerning group-orderability

Question (McCleary)

Does the free group F2 support a finitely determined bi-order ?

• The standard bi-order on Thompson’s group F is finitely deter-
mined (N-Rivas).

• No left-order is finitely determined on the free group (McCleary;
N), on free products (Rivas), on “nilpotent groups” (N), on “sol-
vable groups” (Rivas-Tessera), amenable ?...

• New examples of “nontrivial” finitely determined orders (N, Ito,
Dehornoy): the DINos (ex: 〈a, b, c : a=ba2(b2a2)qc , b=cba2ba〉).

• The Dehornoy order is not finitely determined (N; N-Wiest).
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In dynamical terms

Actions coming from finitely determined orders are structurally
stable in a very strong way:

Up to topological conjugacy, there is a unique action of B3 on the
real line without global fixed points and for which the generators
a1 =σ1σ2 and a2 =σ−1

2 send the origin into positive real numbers.

Theorem (Ghys; Ghys-Sergiescu)

Thompson’s group T is globally structurally stable: up to topolo-
gical conjugacy, it has a unique action on the circle.

Question

Does there exist a finitely-generated, structurally-stable group of
homeomorphisms of the sphere ?



In dynamical terms

Actions coming from finitely determined orders are structurally
stable in a very strong way:

Up to topological conjugacy, there is a unique action of B3 on the
real line without global fixed points and for which the generators
a1 =σ1σ2 and a2 =σ−1

2 send the origin into positive real numbers.

Theorem (Ghys; Ghys-Sergiescu)

Thompson’s group T is globally structurally stable: up to topolo-
gical conjugacy, it has a unique action on the circle.

Question

Does there exist a finitely-generated, structurally-stable group of
homeomorphisms of the sphere ?



In dynamical terms

Actions coming from finitely determined orders are structurally
stable in a very strong way:

Up to topological conjugacy, there is a unique action of B3 on the
real line without global fixed points and for which the generators
a1 =σ1σ2 and a2 =σ−1

2 send the origin into positive real numbers.

Theorem (Ghys; Ghys-Sergiescu)

Thompson’s group T is globally structurally stable: up to topolo-
gical conjugacy, it has a unique action on the circle.

Question

Does there exist a finitely-generated, structurally-stable group of
homeomorphisms of the sphere ?



The regularity enters into the game

This comes from the work on codimension-1 foliations Sacksteder,
Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy’s work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of Diff1
+([0, 1]) admits

a nontrivial homomorphism into R (i.e. Diff1
+([0, 1]) is locally in-

dicable).

“Proof”: Take g 7→ log(Dg(0)).

Local indicability does not hold for Homeo+([0, 1]) (even for the
group of Lipschitz homeomorphisms). An example (also due to

Thurston) is the lifting to P̃SL(2,R) of the (2,3,7)-triangle sub-
group of PSL(2,R).
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Local indicability

A tiling of the hyperbolic disk induced
by the action of the (2,3,7)-triangle group.

Theorem (N)

Local indicability is not the only obstruction for embeddings into
Diff1

+([0, 1]).
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In class C 1+α

Notice that Diff1+α(M) is a group:∥∥Df (x)− Df (y)
∥∥ ≤ C |x − y |α

Theorem (N)

Every finitely-generated subgroup of Diff1+α
+ ([0, 1]) has either

polynomial or exponential growth. This is false for Diff1
+([0, 1]).

• Exponential growth means that the number of elements that
may be written as products of no more than n generators grows
exponentially as a function of n.

• The class of groups of polynomial growth coincides with that of
almost-nilpotent ones (Bass, Guivarch; Gromov).
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The Grigorchuk group: G = 〈ā, b̄, c̄ , d̄〉
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The Grigorchuk group: G = 〈ā, b̄, c̄ , d̄〉

Some formulae: for li ∈ {0, 1},

ā(l1, l2, l3, . . .) = (1− l1, l2, l3, . . .),

b̄(l1, l2, l3, . . .) =

{
(l1, ā(l2, l3, . . .)), l1 = 0,
(l1, c̄(l2, l3, . . .)), l1 = 1,

c̄(l1, l2, l3, . . .) =

{
(l1, ā(l2, l3, . . .)), l1 = 0,
(l1, d̄(l2, l3, . . .)), l1 = 1,

d̄(l1, l2, l3, . . .) =

{
(l1, l2, l3, . . .), l1 = 0,
(l1, b̄(l2, l3, . . .)), l1 = 1.



The Grigorchuk-Machi group: GM = 〈a, b, c , d〉

Some formulae: for li ∈ Z,

a(l1, l2, l3, . . .) = (1 + l1, l2, l3, . . .),

b(l1, l2, l3, . . .) =

{
(l1, a(l2, l3, . . .)), l1 even,
(l1, c(l2, l3, . . .)), l1 odd,

c(l1, l2, l3, . . .) =

{
(l1, a(l2, l3, . . .)), l1 even,
(l1, d(l2, l3, . . .)), l1 odd,

d(l1, l2, l3, . . .) =

{
(l1, l2, l3, . . .), l1 even,
(l1, b(l2, l3, . . .)), l1 odd.

• This is a torsion-free group of intermediate growth. It has a
faithful action on a rooted tree for which every vertex different
from the root has one ancestor and infinitely many descendants.

• The natural action of GM on the interval is C 1 smoothable.

• Nonexistence of embeddings group of intermediate growth (as for
example GM) in Diff1+α

+ ([0, 1]) is established by using (nontrivial
extensions) of classical techniques in 1-dimensional dynamics.
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Actions of “small” groups

• Results that are sharp in what concerns (intermediate) regularity
for some nilpotent group actions (Farb-Franks, Deroin-Kleptsyn-N,
Castro-Jorquera-N,N).

• Classification of solvable group actions (Burslem-Wilkinson, N,
Bonatti-N-Rivas-Monteverde).

• The “program” gets stuck when dealing with amenable groups.

Question

Is Thompson’s group F amenable ?

• F –resp.T– can be realized as a group of C∞ diffeomorphisms of
the interval –resp. the circle– (Thurston, Ghys-Sergiescu).

• Several announcements (including published papers with reviews)
claiming for a proof or a disproof of amenability for F . There are
even serious reasons to think that this problem may be undecidable.
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Actions of “large” groups

Theorem (Witte Morris)

If Γ is a finite-index subgroup of SL(3,Z), then every action of Γ
on S1 (resp. [0, 1]) has a finite image (resp. is trivial).

This inspired important work of Ghys and Burger-Monod concer-
ning C 1 actions on S1 of lattices in higher-rank simple Lie groups.

These groups satisfy Kazhdan’s property (T): every action by iso-
metries of an (affine) Hilbert space has a global fixed point.

In a certain (very precise) sense, most groups do satisfy Kazhdan’s
property (T).
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Actions of Kazhdan groups

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.

Corollary (N)

Thompson’s group T does not satisfy Kazhdan’s property (T).
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Actions of Kazhdan groups

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.

“Proof”: On L2(S1 × S1), consider the isometries

g 7→ U(g) + c(g), where

U(g)ξ(x , y) = ξ(g(x), g(y))·
√

Dg(x)Dg(y),

c(g)(x , y) =

√
Dg(x)Dg(y)

g(x)− g(y)
− 1

x − y
.

A map g is projective iff the following holds for all x , y :

Dg(x)Dg(y)

(g(x)− g(y))2
=

1

(x − y)2
.
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The Schwarzian derivative of g equals

S(g)(x) =
1

6
lim
y→x

[
Dg(x)Dg(y)
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− 1
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]
.
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