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Abstract. Over the last four decades, group actions on manifolds have deserved much attention by
people coming from different fields, as for instance group theory, low-dimensional topology, foliation
theory, functional analysis, and dynamical systems. This text focuses on actions on 1-manifolds.
We present a (non exhaustive) list of very concrete open questions in the field, each of which is
discussed in some detail and complemented with a large list of references, so that a clear panorama
on the subject arises from the lecture.
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From the very beginning, groups were recognized as mathematical objects endowed with a
certain “dynamics”. For instance, Cayley realized every group as a group of permutations via left
translations:

G −→ P(G), g 7→ Lg : G→ G, Lg(h) = gh.

For a finitely-generated group G, this action has a geometric realization: We can consider the
so-called Cayley graph of G whose vertices are the elements of G, two of which f, g are relied by an
edge whenever g−1f is a generator (or the inverse of a generator). Then G becomes a subgroup of
the group of automorphisms of this graph.

In general, the group of such automorphisms is larger than the group G. A classical result
of Frucht [27] consists on a slight modification of this construction so that the automorphisms
group of the resulting graph actually coincides with G. In fact, there are uncountably many such
modifications, even for the trivial group. The smallest nontrivial regular graph of degree 3 with
trivial automorphism group is known as the Frucht graph, and is depicted below.

Figure 1: The Frucht graph.

Another modification of Cayley’s construction allows realizing every countable group as a group
of homeomorphisms of the Cantor set. Assume for a while that such a group G is infinite, and
endow the space M := {0, 1}G = {ϕ : G → {0, 1}} with the product topology (metric). Then M
becomes a Cantor set, and G faithfully acts on M by shifting coordinates: Lg(ϕ)(h) := ϕ(g−1h).
Despite of its apparent simplicity, this shift action is fundamental in several contexts, and has
attracted the attention of many people over the last decades [12, 25, 66, 117].

In the case where G is finite, one can modify the previous construction just by adding extra
coordinates to the space {0, 1}G on which the action is trivial. More interestingly, there is a single
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“small” group of homeomorphisms of the Cantor set that contains all finite groups. To properly
define it, we see the Cantor set as the boundary at infinite ∂Γ of a regular tree Γ of degree 3.
Every proper, clopen ball in ∂Γ can be canonically seen as the boundary at infinite of a rooted
tree. We then consider the set of automorphisms of ∂Γ that arise by cutting ∂Γ into finitely many
clopen balls and sending them into the pieces of another partition of ∂Γ into clopen balls (with
the same number of pieces), so that the restriction to each such ball is nothing but the canonical
identification between these pieces viewed as boundaries of rooted trees. This yields the so-called
Thompson’s group V , which, among many remarkable properties, is finitely presented and simple.
(See [19] for more on this.) It is easy to see that V contains all finite groups.

Having realized every countable group as a group of homeomorphisms of a 0-dimensional space,
one can ask whether some restriction arises when passing to higher dimension. Certainly, there
are number of other motivations for considering this framework, perhaps the most transparent
one coming from foliation theory. Indeed, to every group action of a finitely-generated group
by homeomorphisms of a manifold M , one can associate a foliation by the classical procedure of
suspension as follows: Letting g1, . . . .gk be a system of generators of G, we consider Sk, the surface
of genus k, with fundamental group

π1(Sk) =

〈
a1, . . . , ak, b1, . . . , bk :

k∏
i=1

[ai, bi] = id

〉
.

In there, the generators ai are freely related, hence there is a homomorphism φ : π1(Sk)→ G sending
ai into gi and bi into the identity. We then consider the product space ∆ ×M endowed with the
action of π1(Sk) given by h(x, y) = (h̄(x), φ(h)(y)), where h̄ stands for the deck transformation on
the Poincaré disc ∆ associated to h. The quotient under this action is naturally a foliated, fibrated
space with basis Sk and fiber M , and the holonomy group of this foliation coincides with G. (See
[18] for more on this construction.)

By the discussion above, and despite some remarkable recent progress [14, 15], it seems impos-
sible to develop a full theory of groups acting on manifolds. Here we restrict the discussion to the
simplest case, namely, actions on 1-dimensional spaces. In this context, the ordered structure of
the phase space allows developing a very complete theory for actions by homeomorphisms, and the
techniques coming from 1-dimensional dynamics allow the same for actions by diffeomorphisms. For
each of such settings there are good references with very complete panoramas of the developments
up to recent years: see [38, 53] and [109], respectively. This is the reason why we prefer to focus on
challenging problems that remain unsolved, hoping that the reader will become motivated to work
on some of them.

1 Actions of Kazhdan’s groups

In 1967, Kazhdan introduced a cohomological property and proved that it is satisfied by higher-
rank simple Lie groups and their lattices, as for instance SL(n,Z) for n ≥ 3 and their finite index
subgroups [79]. Since discrete groups satisfying this property are necessarily finitely generated, he
proved finite generation for these lattices, thus solving a longstanding question. Since then, the
so-called Kazhdan’s property (T) has become one of the most important tools for studying actions
and representations of Lie groups.

Although Kazhdan’s original definition is somewhat technical, there is a more geometric prop-
erty later introduced by Serre which turns out to be equivalent in the locally compact setting: a
group satisfies Serre’s property (FH) if every action by (affine) isometries on a Hilbert space has
an invariant vector. (See [7, 91] for a full discussion on this.)
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Property (T) has very strong consequences for the dynamics of group actions in different set-
tings; see for instance [6, 48, 118, 124, 137]. In what concerns actions on 1-dimensional spaces, a
classical result pointing in this direction, due to Watatani and Alperin, states that every action
of a group with property (T) by isometries of a real tree has a fixed point. In a more dynamical
framework, Witte-Morris proved in [131] the following remarkable result: For n ≥ 3, every action
of a finite-index subgroup of SL(n,Z) by orientation-preserving homeomorphisms of the interval
(resp. the circle) is trivial (resp. has finite image).

This theorem is even more remarkable because of its proof, which is amazingly elementary.
However, it strongly relies on the existence of certain nilpotent subgroups inside the lattice, which
do not arise in other (e.g. cocompact) cases. Despite some partial progress in this direction
[82, 83, 134] (see [133] for a full panorama on this), the following question remains open.

Question 1. Does there exist a lattice in a higher-rank simple Lie group admitting a nontrivial
action by orientation-preserving homeomorphisms of the interval ?

Notice that the statement above doesn’t deal with actions on the circle. This is due to a theorem
of Ghys [52], which reduces the general case to that on the interval: Every action of a lattice in a
higher-rank simple Lie group by orientation-preserving homeomorphisms of the circle has a finite
orbit (hence a finite-index subgroup -which is still a lattice- fixes some interval).

The question above can be rephrased in the more general setting of Kazhdan groups.

Question 2. Does there exist an infinite, finitely-generated Kazhdan group of circle homeomor-
phisms ?

Question 3. Does there exist a nontrivial (hence infinite) Kazhdan group of orientation-preserving
homeomorphisms of the interval ?

A concrete result on this concerns actions by diffeomorphisms: If a finitely-generated group
of C3/2 circle diffeomorphisms satisfies property (T), then it is finite [100, 109] (see [26] for the
piecewise-smooth case). However, the situation is unclear in lower regularity. For instance, the
group G := SL(2,Z) n Z2 has the relative property (T) (in the sense that for every action of G by
isometries of a Hilbert space, there is a vector that is invariant by Z2), yet it naturally embeds into
the group of circle homeomorphisms. Indeed, the group SL(2,Z) acts projectively on the 2-fold
covering of S1 -which is still a circle-, and blowing up an orbit one can easily insert an equivariant
Z2-action. However, no action of this group is C1 smoothable [103, 106].

The example above can be easily modified as follows: Letting F2 ⊂ SL(2,Z) be a finite-index sub-
group, the semidirect product G := F2 nZ2 still has the relative property (T) (with respect to Z2).
Moreover, starting from a free group of diffeomorphisms of the interval and using the blowing up
procedure along a countable orbit, one can easily embed G into the group of orientation-preserving
homeomorphisms of the interval. Because of these examples, the answers to both Question 2 and
3 remain unclear.

There is a different, more dynamical approach to Question 1 above. Indeed, when dealing
with the continuous case, actions on the interval and actions on the real line are equivalent. In
the latter context, an easy argument shows that for every action of a finitely-generated group G
by orientation-preserving homeomorphisms of the real line without global fixed points, one of the
following three possibilities occurs:

(i) There is a σ-finite measure µ that is invariant under the action.

(ii) The action is semiconjugate to a minimal action for which every small-enough interval is sent
into a sequence of intervals that converge to a point under well-chosen group elements, but this
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property does not hold for every bounded interval. (Here, by a semiconjugacy we roughly mean a
factor action for which the factor map is a continuous, non-decreasing, proper map of the real line.)

(iii) The action is semiconjugate to a minimal one for which the contraction property above holds
for all bounded intervals.

Observe that a group may have actions of different type. (A good exercise is to build actions
of F2 of each type.) In case (i), the translation number homomorphism g 7→ µ([x, g(x)[) provides a
nontrivial homomorphism from G into R. In case (ii), it is not hard to see that, when looking at
the minimal semiconjugate action, the map ϕ that sends x into the supremum of the points y > x
for which the interval [x, y] can be contracted along group elements is an orientation-preserving
homeomorphism of the real line that commutes with all elements of G and satisfies ϕ(x) > x for
all x. Therefore, there is an induced G-action on the corresponding quotient space R/∼, where
x ∼ ϕ(x), which is a topological circle.

By the discussion above, case (i) cannot arise for infinite groups with property (T). As a direct
consequence of Ghys’ theorem stated above, case (ii) can neither arise for faithful actions of lattices
in higher-rank simple Lie groups. Hence, if such a group admits an action (without global fixed
points) on the real line, the action must satisfy property (iii).

Question 4. Does there exist an infinite, finitely-generated group that acts on the real line all
of whose actions by orientation-preserving homeomorphisms of the line without global fixed points
are of type (iii) ?

2 Cones and orders on groups

Groups of orientation-preserving homeomorphisms of the real line are left orderable, that is, they
admit total order relations that are invariant under left multiplication. Indeed, such a group can be
ordered by prescribing a dense sequence (xn) of points in the line, and letting f ≺ g if the smallest
n for which f(xn) 6= g(xn) is such that f(xn)< g(xn). Conversely, for a countable left-orderable
group, it is not hard to produce an action on the line. (See [38, 53] for more on this.) This may
fail, however, for uncountable groups with cardinality equal to that of Homeo+(R); see [89].

The characterization above yields to a dynamical approach for the theory of left-orderable groups
(which goes back to Dedekind and Hölder). In this view, a useful idea independently introduced
by Ghys [54] and Sikora [125] consists in endowing the space LO(G) of all left-orders of a given
left-orderable group G with the Chabauty topology. (Two orders are close if they coincide over a
“large” finite subset.) This provides a totally disconnected, compact space, which is metrizable in
case G is countable. (One can let dist(≺,≺′) = 1/n, where n is the largest integer such that � and
�′ coincide over the set An of a prescribed exhaustion of G = ∪iAi by finite subsets.)

A result of Linnell establishes that spaces of left orders are either finite or uncountable [84]
(see also [24]). Left-orderable groups with finitely many orders were classified by Tararin [38, 81]:
they are all solvable, the simplest examples being Z and the Klein bottle group 〈a, b : bab = a〉.
In an opposite direction, for some classes of groups G, it is known that no left order is isolated in
LO(G): solvable groups with infinitely many left orders [121], free groups [64, 78, 98, 107, 120], free
products of groups [120], and surface groups [1]. The following question remains, however, open.

Question 5. Does there exist a finitely-generated, amenable, left-orderable group having an iso-
lated order inside an infinite space of left orders ?

It is somewhat surprising that several classes of groups with infinitely many left orders do
admit isolated left orders. Constructions have been proposed by different authors using quite
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distinct techniques: dynamical, group theoretical and combinatorial (see for instance [29, 40, 70,
71, 72, 97, 108]). However, the most striking examples remain the first ones, namely, the braid
groups Bn. To be more precise, let

Bn := 〈σ1, . . . , σn−1 : σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| ≥ 2〉

be the standard presentation of Bn. Denote ai := (σi · · ·σn−1)(−1)i−1
, where i ∈ {1, . . . , n − 1}.

Building on seminal work of Dehornoy [28], Dubrovina and Dubrovin showed in [40] that Bn admits
the disjoint decomposition

Bn =
〈
a1, . . . , an−1〉+ ∪ 〈a−1

1 , . . . , a−1
n−1

〉+ ∪ {id},

where 〈·〉+ stands for the semigroup generated by the corresponding set of elements. An easy argu-
ment then shows that the order whose elements larger than the identity are those in 〈a1, . . . , an−1〉+
is well defined, total and left invariant; more importantly, it is isolated, since it is the only left order
for which the elements a1, . . . , an−1 are all larger than the identity [84].

Despite the apparent simplicity of the previous decomposition into finitely-generated positive
and negative cones, no elementary proof is available. Finding an elementary approach is a chal-
lenging problem. The only nontrivial case that is well understood is that of n = 3, where the
decomposition is evident from the picture below.

Figure 2: The positive and negative cones of an isolated order on the Cayley graph of
B3 = 〈a, b : ba2b = a〉 with respect to the generators a := σ1σ2 and b := σ−1

2 .

Notice that a general left-orderable group G acts on LO(G) by conjugacy: given a left order
� and g ∈ G, the conjugate of � under g is the left order �g for which f1 �g f2 if and only if
gf1g

−1 ≺ gf2g
−1, which is equivalent to f1g

−1 ≺ f2g
−1.

Question 6. Does there exist a finitely-generated, left-orderable group for which the conjugacy
action on its space of left orders is minimal (that is, all the orbits are dense) ?

It is not hard to show that free groups do admit left orders with a dense orbit under the conjugacy
action [98, 120]. However, this action is not minimal. Indeed, free groups are bi-orderable (that
is, they admit left orders that are also invariant under right multiplication), and a bi-order is, by
definition, a fixed point for the conjugacy action.

The conjugacy action was brilliantly used by Witte-Morris in [132] to settle a question of Linnell
[85], which was priorly raised -in the language of foliations- by Thurston [127]: Every finitely-
generated, left-orderable, amenable group admits a nontrivial homomorphism into Z. Indeed,
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amenability provides an invariant probability measure for the conjugacy action. (Remind that one
of the many definitions of amenability is that every action on a compact space admits an invariant
probability measure.) Then the key idea is that, by the Poincaré recurrence theorem, left orders in
the support of such a measure must satisfy a certain recurrence property, which reads as an algebraic
property that is close to the Archimedean one (the so-called Conradian property; see [112]). This
property allows obtaining the desired homomorphism. The next extension of the question (also
proposed by Linnell), which is reminiscent of the Tits alternative, remains open.

Question 7. Does there exist a finitely-generated, left-orderable group without free subgroups and
admitting no nontrivial homomorphism into Z ?

It is worth stressing that a negative answer to Question 4 above would imply a negative one
to Question 7. Indeed, on the one hand, an action of type (i) provides a group homomorphism
into R (via translation numbers), hence into Z for finitely-generated groups. On the other hand,
as explained before, an action of type (ii) factors through a locally contracting action on the circle,
which implies the presence of a free subgroup by a theorem of Margulis [92] (see also [53]).

A closely related question is the following.

Question 8. Does there exist a finitely-generated, left-orderable group G with no nontrivial
homomorphism into Z and trivial group of bounded cohomology H2

b(G,R) ?

Again, a negative answer to Question 4 would also imply a negative one to this question.
Indeed, locally contracting actions on S1 are parameterized (up to semiconjugacy) by a nontrivial
cohomological class taking values in {0, 1}, according to a seminal work of Ghys [49] (see also [53]).

Besides these questions addressed for particular families of left-orderable groups, obstructions
to left-orderability that go beyond torsion-freenes or the so-called unique product property UPP
(namely, for each finite subset of the group, there is at least one product of two elements in this set
that cannot be represented as another product of two elements in the set) are poorly understood.
Although this goes beyond the scope of this text (and is one of the main lines of research of the
theory of left-orderable groups), for specific families of dynamically defined groups, this has wide
interest. A particular question on this was raised and nicely discussed by Calegari in [16].

Question 9. Is the group of orientation-preserving homeomorphisms of the 2-disk that are the
identity at the boundary left orderable ?

Notice that the group in discussion is torsion free, due to a classical result of Kerékjártó [76]
(see also [77]). It is worth to stress that it is even unknown whether this group satisfies the UPP.

3 Groups of piecewise-projective homeomorphisms

Groups of piecewise-affine homeomorphisms have been deeply studied in relation to Thompson’s
groups. Remind that Thompson’s group T is defined as the subgroup of (the previously introduced
group) V formed by the elements that respect the cyclic order in ∂Γ, the boundary of the homoge-
neous tree of degree-3. Besides, Thompson’s group F is the subgroup of T formed by the elements
that fix a specific point in ∂Γ (say, the left-most point of the boundary of a clopen ball). Another
realization arises in dimension 1: T (resp. F ) is a group of orientation-preserving, piecewise-affine
homeomorphisms of the circle (rep. interval). Both groups are finitely presented [19] and have a
dyadic nature, in the sense that the slopes of elements are integer powers of 2, and break points
are dyadic rationals. One of the most challenging questions on these groups is the following.

Question 10. Is Thompson’s group F amenable ?
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Remind that a beautiful result of Brin and Squier establishes that the group of piecewise-affine
homeomorphisms of the interval (hence F ) doesn’t contain free subgroups [13]. However, despite
much effort by several people over the last decades (which includes several mistaken announce-
ments pointing in the two possible directions), Question 9 remains as a kind of nightmare for the
mathematical community; see [55].

Besides the well-known question above, the algebraic structure of certain groups of piecewise-
affine homeomorphisms, mainly generalizations of Thompson’s groups [126], is quite interesting. A
concrete problem on them deals with distorted elements. To properly state it, remind that, given a
group G with a finite generating system G, the word length ‖g‖ of g ∈ G is the minimum number of
factors needed to write g as a product of elements in G (and their inverses). An element of infinite
order g ∈ G is said to be distorted if

lim
n→∞

‖gn‖
n

= 0.

More generally, an element is said to be distorted in a general group whenever it is distorted inside
a finitely-generated subgroup of this group.

Distorted elements naturally appear inside nilpotent groups, and have been extensively used to
study rigidity phenomena of group actions on 2-manifolds [17, 45]. In the 1-dimensional setting,
Avila proved that irrational rotations are distorted (in a very strong way) in the group of C∞

diffeomorphism [5]. However, despite some partial progress [59], the following question is open.

Question 11. Does the group of piecewise-affine circle homeomorphisms contain distorted ele-
ments ?

Beyond the piecewise-affine setting, the group of piecewise-projective homeomorphisms is a
larger source of relevant examples of finitely-generated groups. In this direction, one could ask
whether examples yielding to an affirmative answer to Question 3 may arise inside the group of
piecewise-projective homeomorphisms of the line.

As a concrete example of an interesting group, remind that Thompson’s group T itself has
a natural piecewise-projective, non piecewise-affine realization (which goes back to Thurston and,
independently, to Ghys and Sergiescu): just replace dyadic rationals by rationals via the Minkowsky
mark function, and change piecewise-affine maps by maps that are piecewise in PSL(2,Z).

Among the new examples of groups constructed via this approach, the most remarkable is,
with no doubt, the group GLM introduced by Lodha and Moore in [88], which -as a group acting
on the line- is generated by the homeomorphisms f, g, h below (notice that f, g generate a group
isomorphic -actually, conjugate- to Thompson’s group F ):

f(t) := t+ 1, g(t) :=



t if t ≤ 0,

t
1−t if 0 ≤ t ≤ 1

2 ,

3− 1
t if 1

2 ≤ t ≤ 1,

t+ 1 if t ≥ 1,

and h(t) :=


2t

1+t if t ∈ [0, 1],

t otherwise.

Among its many remarkable properties, GLM has no free subgroup (by an easy extension of
Brin-Squier’s theorem mentioned above), it is non-amenable (due to prior work of Carrière-Ghys
[22] and Monod [99]), and has a finite presentation (this is the main technical contribution of [88]).
Although it is not the first example of a group with these properties (see [114]), it has several
other properties, as being torsion-free and of type F∞ (a property which is much stronger than
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being finitely presented; see [86]). Recently, based on previous work relating smoothness with 1-
dimensional hyperbolic dynamics in the solvable context [11], this group was proven to be non C1

smoothable in [10] (see [87] for a related result concerning a group closely related to T ). This is to
be compared with a classical result of Ghys and Sergiescu, according to which T is topologically
conjugate to a group of C∞ diffeomorphisms [57]. The following general question becomes natural.

Question 12. What are the groups of piecewise-projective homeomorphisms of the interval/circle
that are topologically conjugate to groups of C1 diffeomorphisms ?

4 The spectrum of sharp regularities for group actions

Regularity issues appear as fundamental when dealing with both the dynamical properties of a
given action and the algebraic constraints of the acting group. The original source of this goes back
to Denjoy’s classical theorem: Every C2 circle diffeomorphism without periodic points is minimal.
The C2 hypothesis or, at least, a derivative with bounded variation, is crucial for this result. (The
theorem is false in the C1+α setting [63, 130], and remains unknown for diffeomorphisms whose
derivatives are τ -continous with respect to the modulus of continuity τ(x) = |x log(x)|.) This is
the reason why, when dealing with group actions (and, more generally, codimension-1 foliations),
such an hypothesis is usually made. Nevertheless, in recent years, many new phenomena have been
discovered in different regularities, thus enriching the theory.

One of the main problems to deal with in this direction is that of the optimal regularity. This
problem is twofold. On the one hand, one looks for the maximal regularity that can be achieved,
under topological conjugacy, of a given action. On the other hand, one asks for the maximal
regularity in which a given group can faithfully act by varying the topological dynamics. A very
concrete question in the latter direction is the following.

Question 13. Given 0 < α < β < 1, does there exist a finitely-generated group of C1+α diffeo-
morphisms of the circle/interval that does not embed into the group of C1+β diffeomorphisms ?

There are concrete reasons for restricting this problem only to regularities between C1 and C2.
On the one hand, Kim and Koberda have recently settled the analog of Question 13 for regularities
larger than C2, whereas the (discrete) Heisenberg group faithfully acts by C1+α diffeomorphisms
for any α < 1 [23], but it does not embed into the group of C2 diffeomorphisms [116]. On the other
hand, Thurston gave the first examples of groups that are non C1 smoothable via his remarkable
stability theorem [127] (see also [11, 106]), while examples of groups of C1 diffeomorphisms that
are non C1+α smoothable arise in relation to growth of groups [105]. In an opposite direction,
every countable group of circle homeomorphisms is topologically conjugate to a group of Lipschitz
homeomorphisms, as it is shown below following the arguments of [34, 111].

Example 1. Let G be a group with a finite, symmetric generating system G which acts by
homeomorphisms of a compact 1-manifold M . Let Leb denote the normalized Lebesgue measure
on M . Given ε > 0, let µ̄ε be the measure on M defined as

µ̄ε :=
∑
f∈Γ

e−ε‖f‖f∗(Leb),

where ‖f‖ denotes the world-length of g (with respect to G). The measure µ̄ε has finite mass for ε
large enough. Indeed,

µ̄ε(M) =
∑
n≥0

e−nε|S(n)| ≤
∑
n≥0

e−nε|G|(|G| − 1)n−1 =
|G|
|G| − 1

∑
n≥0

|G| − 1

eε
,
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where |S(n)| stands for the cardinal of the set S(n) of elements having world-length equal to n.
Moreover, since for every g ∈ G and all f ∈ Γ it holds ‖gf‖ ≤ ‖f‖+ 1, we have

g∗(µ̄ε) =
∑
f∈Γ

e−ε‖f‖(gf)∗(Leb) ≤ eε
∑
f∈Γ

e−ε‖gf‖(gf)∗(Leb) = eεµ̄ε. (1)

Let µε be the normalization of µ̄ε. The probability measure µε has total support and no atoms.
It is hence topologically equivalent to Leb (dimension 1 is crucial here; see [61, 62] for examples
of non-smoothable homeomorphisms in higher dimension). By a change of coordinates sending µε
into Leb, relation (1) becomes, for each interval I ⊂M ,

|g−1(I)| = g∗(Leb)(I) ≤ eεLeb(I) = eε|I|.

This means that, in these new coordinates, g−1 is Lipschitz with constant ≤ eε.

It is interesting to specialize Question 12 to nilpotent group actions. Indeed, these actions are
known to be C1 smoothable [43, 73, 115], though they are non C2 smoothable unless the group is
Abelian [116]. Moreover, the only settled case for Question 12 is that of a nilpotent group, namely,
the group G4 of 4 × 4 upper-triangular matrices with integer entries and 1’s in the diagonal. In
concrete terms, G4 embeds into the group of C1+α diffeomorphisms of the interval for every α < 1/2,
though it does not embed for α > 1/2 [74]. (The case α=1/2 remains open; compare [110].

5 Zero Lebesgue measure for exceptional minimal sets

Differentiability issues are crucial in regard to ergodic type properties for actions. It follows from
Denjoy’s theorem quoted above that a single C2 circle diffeomorphism cannot admit an exceptional
minimal set, that is, a minimal invariant set homeomorphic to the Cantor set. Although the
mathematical community took some time to realize that these sets may actually appear for group
actions (the first explicit example appears in [123]), it is worth pointing out that these sets naturally
arise, for instance, for Fuchsian groups (and, more generally, for groups with a Schottky dynamics),
as well as for certain semiconjugates of Thompson’s group T . The following question is due to Ghys
and Sullivan.

Question 14. Let G be a finitely-generated group of C2 circle diffeomorphisms. Assume that G
admits an exceptional minimal set Λ. Is the Lebesgue measure of Λ equal to zero ?

An important recent progress towards the solution of this question is made in [36], where it
is answered in the affirmative for groups of real-analytic diffeomorphisms. Besides, an affirmative
answer is provided, also in the real-analytic context, to another important question due to Hector.

Question 15. Let G be a finitely-generated group of C2 circle diffeomorphisms. Assume that G
admits an exceptional minimal set Λ. Is the set of orbits of intervals of S1 \ Λ finite ?

Beyond having settled these two questions in the real-analytic context, the main contribution of
[36] consists in proposing new ideas yielding to structure results for groups of circle diffeomorphisms
admitting an exceptional minimal set (see [32] and the references therein for a full discussion on
this). Indeed, so far, positive answers to these questions were known only in the expanding case
(that is, whenever for every x∈Λ there is g ∈ G such that Dg(x) > 1; see [101]), and for Markovian
like dynamics [20, 21]. What is clear now is that, in the non expanding case, a certain Markovian
structure must arise (see [31] for a precise result in this direction in the conformal case). This view
should also be useful to deal with the following classical question (conjecture) of Dippolito [39].
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Question 16. Let G be a finitely-generated group of C2 circle diffeomorphisms. Assume that
G admits an exceptional minimal set Λ. Is the restriction of the action of G to Λ topologically
conjugated to the action of a group of piecewise-affine homeomorphisms ?

It should be pointed out that Questions 14, 15 and 16 have natural analogs for codimension-1
foliations. In this broader context, they all remain widely open, even in the (transversely) real-
analytic setting. However, the ideas and techniques from [36] show that, also in this generality,
structural issues are the right tools to deal with them.

6 Ergodicity of minimal actions

In case of minimal actions, a subtle issue concerns ergodicity (with respect to the Lebesgue measure),
that is, the nonexistence of measurable invariant sets except for those having zero or full (Lebesgue)
measure. The original motivation for this comes from a theorem independently proved by Katok
[75] and Herman [63]: The action of a C2 circle diffeomorphism without periodic points is ergodic
(with respect to the Lebesgue measure). Notice that this result does not follow from Denjoy’s
theorem (which only ensures minimality), since we known from the seminal work of Arnold [4] that
the (unique) invariant measure may be singular with respect to the Lebesgue measure.

Katok’s proof is performed via a classical control of distortion technique, which means that
there is a uniform control on the ratio supDfn/ inf Dfn for the value of the derivatives on
certain intervals along a well-chosen sequence of compositions fn. This allows transferring geometric
data from micro to macro scales, so that the proportion of the measures of different sets remains
controlled when passing from one scale to another. Clearly, this avoids the existence of invariant
sets of intermediate measure, thus proving ergodicity.

Herman-Katok’s theorem deals with an “elliptic” context, whereas several classical ergodicity-
like results (going back to Poincaré’s linearization theorem) hold in an hyperbolic context. One
hopes that a careful combination of both techniques would yield to an affirmative answer to the
next question, also due to Ghys and Sullivan.

Question 17. Let G be a finitely-generated group of C2 circle diffeomorphisms. If the action of
G is minimal, is it necessarily ergodic with respect to the Lebesgue measure ?

So far, an affirmative answer to this question is known in the case where the group is generated
by elements that are C2 close to rotations [101], for expanding actions [101, 35], and for groups of
real-analytic diffeomorphisms which are either free [36] or have infinitely many ends [2]. It is worth
pointing out that the C2 regularity hypothesis is crucial here; see for instance [80].

Again, Question 17 has a natural extension to the framework of codimension-1 foliations, where
it remains widely open.

7 Absolute continuity of the stationary measure

Due to the absence of invariant measures for general groups actions, a useful tool to consider are
the stationary measures, which correspond to probability measures that are invariant in mean.
More precisely, given a probability distribution p on a (say, finitely generated) group G that acts
by homeomorphisms of a compact metric space M , a probability measure µ on M is said to be
stationnary with respecto to p if for every measurable subset A⊂M , one has

µ(A) =
∑
g∈G

p(g)µ(g−1(A)).
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There are always stationary measures: this follows from a fixed-point argument or from Krylov-
Bogoliuvob’s argument consisting in taking means and passing to the limit in the (compact) space
of probabilities on M . A crucial property is that, in case of uniqueness of the stationary measure
(with respect to a given p), the action is ergodic with respect to this measure [109].

It is shown in [3, 34] that, for a group of orientation-preserving circle homeomorphisms G acting
minimally, the stationary measure is unique with respect to each probability distribution p on G
that is non-degenerate (i.e. the support of the measure generates G as a semigroup). Hence, the
next problem becomes relevant in relation to Question 17 above.

Question 18. Let G be a finitely-generated group of C2 orientation-preserving circle diffeomor-
phisms. Does there exist a non-degenerate probability distribution on G for which the stationary
measure is absolutely continuous with respect to the Lebesgue measure ?

A classical argument of “balayage” due to Furstenberg [46] solves this question for lattices in
PSL(2,R). However, this strongly relies on the geometry of the Poincaré disk, and does not extend
to general groups. Moreover, it is shown in [35, 60] (see also [8]) that the resulting probability
measure is singular with respect to the Lebesgue measure for non cocompact lattices whenever the
distribution p is symmetric (i.e. p(g) = p(g−1) for all g ∈ G) and finitely supported (and, more
generally, for distributions with finite first moment). This also holds for groups with a Markovian
dynamics for which there are non-expandable points (i.e. points x such that Dg(x) ≤ 1 for all
g ∈ G), as for instance (the smooth realizations of) Thompson’s group T . (Notice that, for the
canonical action of PSL(2,Z), the point [1 : 0] is non-expandable.)

Once again, Question 18 extends to the framework of codimension-1 foliations, where it remains
widely open. (Uniqueness of the stationary measure in this setting and, more generally, in a
transversely conformal framework, is the main content of [33].)

A probability distribution on a group induces a random walk on it, many of whose properties re-
flect algebraic features of the group and translate into particular issues of the stationary measures.
Remind that to every probability distribution one can associate a “maximal boundary”, which,
roughly, is a measurable space endowed with a “contracting” action having a unique stationary
measure so that any other space of this type is a measurable factor of it [47]. The study of this
Poisson-Furstenberg boundary is one of the main topics in this area, and explicit computations are,
in general, very hard [41]. In our framework, a valuable result in this direction was obtained by
Deroin, who proved in [30] that for every group of smooth-enough circle diffeomorphisms with no
finite orbit and whose action is locally discrete in a strong (and very precise) sense, the Poisson-
Furstenberg boundary identifies with the circle endowed with the corresponding stationary measure
provided the probability distribution on the group satisfies a certain finite-moment condition. Ex-
tending this result to more general groups is a challenging problem. In particular, the next question
remains unsolved.

Question 19. Given a symmetric, finitely-supported, non-degenerate probability distribution on
Thompson’s group T , does the Poisson-Furstenberg boundary of T with respect to it identifies with
the circle endowed with the corresponding stationary measure ?

Last but not least, random walks are also of interest for groups acting on the real line. In this
setting, a nontrivial result is the existence of a (nonzero) σ-finite stationary measure for symmetric
distributions on finitely-generated groups [37]. This is closely related to general recurrence type
results for symmetric random walks on the line. One hopes that these ideas may be useful in dealing
with Question 1, though no concrete result in this direction is known yet.
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8 Structural stability and the space of representations

Another aspect in which differentiability issues crucially appear concerns stability. Remind that,
given positive numbers r ≤ s, an action by Cs diffeomorphisms is said to be Cr structurally stable
if every perturbation that is small enough in the Cs topology is Cr conjugate to it. (In the case
s = 0, we allow semiconjugacies instead of conjugacies.) Usually, structural stability arises in
hyperbolic contexts, and the situation in an elliptic type framework is less clear. The next question
was formulated by Rosenberg more than 40 years ago (see for instance [122]).

Question 20. Does there exist a faithful action of Z2 by C∞ orientation-preserving circle diffeo-
morphisms that is C∞ structurally stable ?

A closely related question, also due to Rosenberg, concerns the topology of the space of Z2-
actions.

Question 21. Given r ≥ 1, is the subset of Diffr+(S1)2 consisting of pairs of commuting diffeomor-
phisms locally connected ?

These two questions have inspired very deep work of many people, including Herman and
Yoccoz, who devoted their thesis to closely related problems. However, despite all these efforts,
they remain widely open. Among some recent progress concerning them, we can mention the proof
of the connectedness of the space of commuting C∞ diffeomorphisms of the closed interval [9]
(which, in its turn, has important consequences for codimension-1 foliations [42]), and that of the
path connectedness of the space of commuting C1 diffeomorphisms of either the circle or the closed
interval [111]. These two results apply in general to actions of Zn.

In a non-Abelian context, several other questions arise in relation to the structure of the space
of actions. Among them, we can stress a single one concerning actions with an exceptional minimal
set, for which the results from [36] point in a positive direction.

Question 22. Given a faithful action φ0 of a finitely generated group G by C∞ circle diffeomor-
phisms admitting an exceptional minimal set, does there exist a path φt of faithful actions of G
that is continuous in the C∞ topology and starts with φ0 = φ so that each φt admits an exceptional
minimal set for t < 1 and φ1 is minimal ?

Quite surprisingly, structural stability is interesting even in the continuous setting. Indeed, the
dictionary between left orders and actions on the interval shows that such an action is structurally
stable if and only if a certain canonical left order arising from it is isolated in whole the space of left
orders. Similarly, an action on the circle is structurally stable if and only if a natural “cyclic order”
induced from it is an isolated point in the corresponding space of cyclic orders (endowed with the
appropriate Chabauty topology; see [90]). In this regard, we may ask the following. (Compare
Question 5.)

Question 23. Let G be a finitely-generated group of circle homeomorphisms whose action is C0

structurally stable. Suppose that G admits infinitely many non semiconjugate actions on the circle.
Does G contain a free subgroup in two generators ?

9 Approximation by conjugacy and single diffeomorphisms

Some of the connectedness results discussed above are obtained by constructing paths of conjugates
of a given action. This idea is particularly simple and fruitful in very low regularity. We next give
a quite elementary example to illustrate this.
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Example 2. As is well known, every circle homeomorphism has zero topological entropy. In most
textbooks, this is proved by an easy counting argument of separated orbits for such an f . However,
to show this, we can also follow the arguments of Example 1 for G = 〈f〉 and any ε > 0. Indeed, the
outcome is that f is topologically conjugate to a Lipschitz homeomorphism with Lipschitz constant
≤ eε. By the invariance of entropy under topological conjugacy and its classical estimate in terms
of the logarithm of the Lipschitz constant, we obtain that htop(f) ≤ ε. Since this holds for all
ε > 0, we must have htop(f) = 0.

The naive argument above still works for groups of subexponential growth, as for instance
nilpotent groups [111]. Therefore, for all actions of these groups on 1-manifolds, the geometric
entropy (as defined by Ghys, Langevin and Walczak in [56]) always equals zero. More interestingly,
a similar strategy should be useful to deal with groups of C1 diffeomorphisms. Indeed, in this
context, Hurder has shown in [67] that zero entropy is a consequence of the absence of resilient
pairs, which means that there are no elements f, g such that x < f(x) < f(y) < g(x) < g(y) < y
for certain points x, y. (Notice that the converse holds even for homeomorphisms, as is follows
from a classical counting argument.) The proof of this fact is quite involved, and one hopes for an
affirmative answer to the question below, which would immediately imply this result.

Question 24. Let G be a finitely-generated group of C1 circle diffeomorphisms. Suppose that G
has no resilient pairs. Given ε > 0, can G be conjugated (by a homeomorphism) into a group of
Lipschitz homeomorphisms for which the Lipschitz constants of the generators are all ≤ eε ?

A particularly clarifying example on this concerns conjugates of C1 diffeomorphisms without
periodic points (that is, with irrational rotation number), as explained below.

Example 3. Remind that every cocycle ϕ : M → R with respect to a continuous map f : M →M
is cohomologous to each of its Birkhoff means. Indeed, letting

ψn :=
1

n

n−1∑
i=0

Siϕ, where Snϕ :=
n−1∑
i=0

ϕ ◦ f i and S0ϕ := 0,

one easily checks the identity

ϕ− Snϕ

n
= ψn − ψn ◦ f.

If f belongs to Diff1
+(S1), we can specialize this remark to ϕ := log(Df). Besides, if f has irrational

rotation number ρ, then an easy argument shows that Sn(logDf)/n→ 0. Therefore,

ψn ◦ f + logDf − ψn −→ 0.

Adding a constant cn to ψn, we may assume that ψn coincides with logDhn for a C1 diffeomorphism
hn. The relation above then becomes logD(hnfh

−1
n )◦hn → 0, which shows that hnfh

−1
n converges

to Rρ in the C1 topology.

The argument above extends to actions of nilpotent groups, thus giving an affirmative answer
to Question 25 for these groups [111]. However, this idea strongly uses the additive nature of the
logarithm of the derivative, and it seems hard to directly extend it to higher regularity. Despite
this, one expects that the use of a Schwarzian-like derivative (cocycle) would yield to an affirmative
answer to the following question.

Question 25. Let f be a C2 circle diffeomorphism of irrational rotation number ρ. Does the set
of C2 conjugates of f contain the rotation Rρ in its C2-closure ?
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The discussion above reveals that many natural questions still remain unsolved for single dif-
feomorphisms. Below we state two more of them.

Question 26. Given r > 1, does there exist s ≥ r such that for every Cs circle diffeomorphism
f of irrational rotation number ρ, the sequence f qn converges to the identity in the Cr topology,
where (qn) is the sequence of denominators of the rational approximations of ρ ?

This question is inspired by a fundamental result of Herman [63], according to which one has
the convergence f qn→Id in the C1 topology for C2 circle diffeomorphisms of irrational rotation
number (see also [113, 136]).

Question 27. Let f be a C2 circle diffeomorphism of irrational rotation number ρ. Given ε > 0,
let Mε be the mapping torus of f over S1 × [0, ε], that is, the surface obtained by identifying
(x, 0) ∼ (f(x), ε). Let ρ(ε) ∈ R/Z be such that Mε corresponds to the elliptic curve C/(Z+ iρ(ε)Z).
Does ρ(ε) converges to ρ as ε→ 0 ?

This question is due to Arnold. One hopes that recent progress on fine properties of circle
diffeomorphisms should lead to a positive solution of it.

10 Topological invariance of the Godbillon-Vey class

The group of circle diffeomorphisms supports a remarkable cohomology class, namely, the Godbillon-
Vey class, which is represented by the cocycle

(f, g) 7→
∫

S1

log(Df)D(logD(g ◦ f)).

Notice that, though this formula requires two derivatives, it can be naturally extended to C3/2+ε

diffeomorphisms (just pass half of the derivative from right to left; see [69, 129]). However, no
extension to C1+α diffeomorphisms is possible for α small [128, 130].

According to a well-known result of Gelfand and Fuchs, the continuous cohomology of the whole
group of C∞ circle diffeomorphisms is generated by two classes: the Euler class (which is the single
generator in the C1 setting), and the Godbillon-Vey class. Obviously, the Godbillon-Vey class
induces (by restriction) a class in H2(G,R) for every group G of C3/2+ε circle diffeomorphisms.
We refer to [50, 68] and the references therein for a panorama on this, including a full discussion
on the next open question.

Question 28. Is the (restriction of the) Godbillon-Vey class invariant under topological conjugacy
for groups of C2 diffeomorphisms ?

A first result in the positive direction was established by Raby, who proved invariance under
conjugacy by C1 diffeomorphisms [119]. Very soon after that, an alternative proof for this fact was
proposed by Ghys and Tsuboi [58]. Some years later, in [69]. Hurder and Katok proved invariance
under conjugacies that are absolutely continuous (with an absolutely continuous inverse); see [65]
for a recent result in the same direction.

Ghys-Tsuboi’s proof of Raby’s theorem is of a dynamical nature. Indeed, in the most relevant
cases of this framework, what it is proved is that C1 conjugacies between groups of Cr diffeomor-
phisms are automatically Cr provided r ≥ 2. This applies for instance to non-Abelian groups whose
action is minimal.

It is not hard to extend Ghys-Tsuboi’s theorem to (bi-)Lipschitz conjugacies [104, 109]. How-
ever, absolutely continuous conjugacies are harder to deal with.
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Question 29. What are the groups of C2 circle diffeomorphisms acting minimally for which the
normalizer inside the group of absolutely continuous homeomorphisms coincides with that inside
the group of diffeomorphisms ?

11 On groups of real-analytic diffeomorphisms

The real-analytic framework offers new problems of wide interest even in the classical context.
In this regard, remind that a celebrated result proved by Yoccoz in [135] establishes that every
real-analytic circle homeomorphism is minimal provided it has an irrational rotation number, thus
extending Denjoy’s theorem to this setting. (The same holds for C∞ homeomorphisms with non-
flat singularities.) Ghys has asked whether this extends to the case where singularities may also
arise for the inverse of the map.

Question 30. Does Denjoy’s theorem hold for circle homeomorphisms whose graphs are real-
analytic ?

In a cohomological setting, another question concerns the validity of Geldfand-Fuch’s theorem
in the real-analytic case.

Question 31. Is the continuous cohomology of the group Diffω+(S1) of orientation-preserving,
real-analytic circle diffeomorphisms generated by the Euler and the Godbillon–Vey classes ?

A negative answer to this question would require the construction of a cocycle that uses real-
analyticity in a crucial way. This would be somehow similar to Mather’s homomorphism defined
on the group of C1 circle diffeomorphisms with derivatives having bounded variation. Remind that
this is defined as

f 7→
∫

S1

[D(logDf)]reg,

where [D(logDf)]reg stands for the regular part of the signed measure obtained as the derivative
(in the sense of distributions) of the (finite total variation) function logDf ; see [96]. Such a homo-
morphism cannot exist in other regularities, because the corresponding groups of diffeomorphisms
are known to be simple [93, 94], except for class C2 [95]. By the way, though this is not related to
real-analytic issues, this critical case must appear in any list of selected problems on the subject.

Question 32. Is the group of orientation-preserving C2 circle diffeomorphisms simple ?

Finally, we would like to focus on finitely-generated subgroups of Diffω+(S1). These have a
tendency to exhibiting a much more rigid behavior than groups of diffeomorphisms. For example,
though Thompson’s groups act by C∞ diffeomorphisms, the group F (hence T ) does not faithfully
act by real-analytic diffeomorphisms. One way to see this is by looking at solvable subgroups:
F contains such groups in arbitrary degree of solvability, though solvable groups of real-analytic
diffeomorphisms of either the interval or the circle are matebelian [51]. (See however [102] for
algebraic constraints that apply to solvable groups of C2 diffeomorphisms.)

Quite surprisingly, many algebraic issues that are known to hold or not to hold in the setting
of C∞ diffeomorphisms are open in the real-analytic setting. For instance, it is unknown whether
irrational rotations are distorted elements in Diffω+(S1). A more striking open question concerns
the famous Tits alternative.

Question 33. Does the Tits alternative hold in Diffω+(S1) ? More precisely, does every non-
metabelian subgroup of this group contain a free subgroup ?
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We refer to [44] for a partial result that reduces the general case to that of the interval. Notice
that F provides a negative answer to this question for groups of C∞ diffeomorphisms because of
the aforementioned Ghys-Sergiescu’s C∞ realization and Brin-Squier’s theorem.
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