Groups, Orders, and Dynamics Fourth Lecture

Andrés Navas, USACH

YGGT meeting HAIFA, February 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Probabilistic and dynamical aspects of (left) orderable groups.
 A. Navas; see http://imerl.fing.edu.uy/coloquio2/materiales/Curso_Navas.pdf

- Orderable Groups.
 R. Botto-Mura, A. Rhemtulla.
- Right-ordered Groups.
 V. Kopytov, V. Medvedev.

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \colon [\sigma_i, \sigma_j] = 1 \text{ if } |i-j| \ge 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \colon [\sigma_i, \sigma_j] = 1 \text{ if } |i-j| \ge 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Patrick Dehornoy)

 B_n is left-orderable.

Positive words

A word

$$\sigma = \sigma_{i_1}^{n_1} \sigma_{i_2}^{n_2} \cdots \sigma_{i_k}^{n_k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is <u>positive</u> if the σ_j of minimal index j only appears with positive exponents

Positive words

A word

$$\sigma = \sigma_{i_1}^{n_1} \sigma_{i_2}^{n_2} \cdots \sigma_{i_k}^{n_k}$$

is <u>positive</u> if the σ_j of minimal index j only appears with positive exponents (*e.g.* $\sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Positive words

A word

$$\sigma = \sigma_{i_1}^{n_1} \sigma_{i_2}^{n_2} \cdots \sigma_{i_k}^{n_k}$$

is <u>positive</u> if the σ_j of minimal index j only appears with positive exponents (e.g. $\sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_n can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

Positive words

A word

$$\sigma = \sigma_{i_1}^{n_1} \sigma_{i_2}^{n_2} \cdots \sigma_{i_k}^{n_k}$$

is <u>positive</u> if the σ_j of minimal index j only appears with positive exponents (e.g. $\sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_n can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

$$\sigma_1^{-N}\sigma_2\sigma_1$$

Positive words

A word

$$\sigma = \sigma_{i_1}^{n_1} \sigma_{i_2}^{n_2} \cdots \sigma_{i_k}^{n_k}$$

is <u>positive</u> if the σ_j of minimal index j only appears with positive exponents (e.g. $\sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_n can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

$$\sigma_1^{-N}\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2^{-N}$$

Question (Dehornoy-Rolfsen)

Is P_D finitely generated as a semigroup (monoid) ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question (Dehornoy-Rolfsen)

Is P_D finitely generated as a semigroup (monoid) ?

Theorem (N)

No: the Dehornoy order is an accummulation point of its own orbit.

Question (Dehornoy-Rolfsen)

Is P_D finitely generated as a semigroup (monoid) ?

Theorem (N)

No: the Dehornoy order is an accummulation point of its own orbit.

Proof [N-Wiest]. For n = 3: the conjugates $(\preceq_D)_{h_j}$ accummulate \preceq_D , where $h_j = \sigma_1^{-1} \sigma_2^j$.

Accumulating the Dehornoy order

• If w is a 1-positive word: $w = \sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}$, then

$$\sigma_1^{-1} \sigma_2^j w \sigma_2^{-j} \sigma_1 = \underline{\sigma_1^{-1} \sigma_2^j (\sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}) \sigma_2^{-j} \sigma_1 } \\ = \underline{\sigma_2 \sigma_1^{j+k_1} \sigma_2^{-1} \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell} \sigma_2^{-j} \sigma_1. }$$

Thus $\sigma_1 \sigma_2^{-j} w \sigma_2^j \sigma_1$ is 1-positive for sufficiently large j (namely for $j > -k_1$).

Accummulating the Dehornoy order

• If w is a 1-positive word: $w = \sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}$, then

$$\sigma_1^{-1} \sigma_2^j w \sigma_2^{-j} \sigma_1 = \underline{\sigma_1^{-1} \sigma_2^j (\sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}) \sigma_2^{-j} \sigma_1}_{= \underline{\sigma_2 \sigma_1^{j+k_1} \sigma_2^{-1} \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell} \sigma_2^{-j} \sigma_1.}$$

Thus $\sigma_1 \sigma_2^{-j} w \sigma_2^j \sigma_1$ is 1-positive for sufficiently large j (namely for $j > -k_1$).

• If w is 2-positive: $w = \sigma_2^k$ (k > 0), then...

Accummulating the Dehornoy order

• If w is a 1-positive word: $w = \sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}$, then

$$\sigma_1^{-1} \sigma_2^j w \sigma_2^{-j} \sigma_1 = \underline{\sigma_1^{-1} \sigma_2^j (\sigma_2^{k_1} \sigma_1 \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell}) \sigma_2^{-j} \sigma_1}_{= \underline{\sigma_2 \sigma_1^{j+k_1} \sigma_2^{-1} \sigma_2^{k_2} \sigma_1 \dots \sigma_2^{k_{\ell-1}} \sigma_1 \sigma_2^{k_\ell} \sigma_2^{-j} \sigma_1.}$$

Thus $\sigma_1 \sigma_2^{-j} w \sigma_2^j \sigma_1$ is 1-positive for sufficiently large j (namely for $j > -k_1$).

• If w is 2-positive: $w = \sigma_2^k$ (k > 0), then...

• Finally, $(\prec_D)_j$ is different from \prec_D for all positive integers j, since its smallest positive element is the conjugate of σ_2 by $\sigma_2^{-j}\sigma_1$, and this is different from σ_2 (the smallest element of \preceq_D).

Recall that B_n is the mapping class group of a closed disk D_n with n punctures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall that B_n is the mapping class group of a closed disk D_n with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point.

Recall that B_n is the mapping class group of a closed disk D_n with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall that B_n is the mapping class group of a closed disk D_n with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.

 $f \succ g$ if the endpoint of $f(\Gamma)$ is to the right of $g(\Gamma)$

Recall that B_n is the mapping class group of a closed disk D_n with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.

 $f \succ g$ if the endpoint of $f(\Gamma)$ is to the right of $g(\Gamma)$

For many geodesics Γ , this gives a total (left-invariant) ordering (se so-called Nielsen-Thurston ordering associated to Γ).

Nielsen-Thurston orders

▲ロト ▲母 ト ▲目 ト ▲目 ト 一目 - のへぐ

Theorem (N-Wiest)

No Nielsen-Thurston order is isolated in the space of braid orders.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Pure braid groups are bi-orderable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)

For $n \ge 5$, no bi-order o PB_n extends into a left-order of B_n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)

For $n \ge 5$, no bi-order o PB_n extends into a left-order of B_n .

If a left-order restricted to a finite-index subgroup is Conradian, then it is Conradian.

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)

For $n \ge 5$, no bi-order o PB_n extends into a left-order of B_n .

- If a left-order restricted to a finite-index subgroup is Conradian, then it is Conradian.
- For n ≥ 5, the commutator subgroup B'_n is (finitely-generated and) perfect (hence B_n is not locally indicable).

Lemma

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Lemma

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n$$

Lemma

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g.$$

Claim: Either $fg \succ g$ or $fg^{2n} \succ g$.

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g$$
.

Claim: Either $fg \succ g$ or $fg^{2n} \succ g$. Otherwise,

$$g^{-1}fg \prec id, \qquad g^{-1}fg^{2n} \prec id.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g.$$

Claim: Either $fg \succ g$ or $fg^{2n} \succ g$. Otherwise,

$$g^{-1}fg \prec id, \qquad g^{-1}fg^{2n} \prec id.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow

 $\textit{id}~\prec~g^{-1}f^mg^{2n}$

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g.$$

Claim: Either $fg \succ g$ or $fg^{2n} \succ g$. Otherwise,

$$g^{-1}fg \prec id, \qquad g^{-1}fg^{2n} \prec id.$$

$$id \prec g^{-1}f^mg^{2n} = (g^{-1}fg)^{m-1}(g^{-1}fg^{2n})$$

If the restriction of a left-order \leq on Γ to a finite-index subgroup Γ_0 is Conradian, then \leq is Conradian.

Proof. Let $f \succ id$ and $g \succ id$ be in Γ . For positive m, n, both f^m and g^n belong to Γ_0 . Hence,

$$f^m g^{2n} \succ g^n \succ g.$$

Claim: Either $fg \succ g$ or $fg^{2n} \succ g$. Otherwise,

$$g^{-1}fg \prec id, \qquad g^{-1}fg^{2n} \prec id.$$

$$id \prec g^{-1}f^mg^{2n} = (g^{-1}fg)^{m-1}(g^{-1}fg^{2n}) \prec id.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <