Groups, Orders, and Dynamics Fourth Lecture

Andrés Navas, USACH

YGGT meeting
HAIFA, February 2013

- Probabilistic and dynamical aspects of (left) orderable groups.
A. Navas; see
http://imerl.fing.edu.uy/coloquio2/materiales/Curso_Navas.pdf
- Orderable Groups.
R. Botto-Mura, A. Rhemtulla.
- Right-ordered Groups.
V. Kopytov, V. Medvedev.

Braid groups

$$
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}:\left[\sigma_{i}, \sigma_{j}\right]=1 \text { if }\right| i-j\left|\geq 2, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

Braid groups

$$
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}:\left[\sigma_{i}, \sigma_{j}\right]=1 \text { if }\right| i-j\left|\geq 2, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

Theorem (Patrick Dehornoy)

B_{n} is left-orderable.

Positive words

A word

$$
\sigma=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \cdots \sigma_{i_{k}}^{n_{k}}
$$

is positive if the σ_{j} of minimal index j only appears with positive exponents

Positive words

A word

$$
\sigma=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \cdots \sigma_{i_{k}}^{n_{k}}
$$

is positive if the σ_{j} of minimal index j only appears with positive exponents (e.g. $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1}$).

Positive words

A word

$$
\sigma=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \cdots \sigma_{i_{k}}^{n_{k}}
$$

is positive if the σ_{j} of minimal index j only appears with positive exponents (e.g. $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_{n} can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

Positive words

A word

$$
\sigma=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \cdots \sigma_{i_{k}}^{n_{k}}
$$

is positive if the σ_{j} of minimal index j only appears with positive exponents (e.g. $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_{n} can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

$$
\sigma_{1}^{-N} \sigma_{2} \sigma_{1}
$$

Positive words

A word

$$
\sigma=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \cdots \sigma_{i_{k}}^{n_{k}}
$$

is positive if the σ_{j} of minimal index j only appears with positive exponents (e.g. $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1}$).

Theorem (Dehornoy)

Every nontrivial element of B_{n} can be represented as a positive or as a negative element. No element can be represented both as a positive and negative element.

$$
\sigma_{1}^{-N} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}^{-N}
$$

Question (Dehornoy-Rolfsen)
Is P_{D} finitely generated as a semigroup (monoid) ?

Question (Dehornoy-Rolfsen)
 Is P_{D} finitely generated as a semigroup (monoid) ?

Theorem (N)

No: the Dehornoy order is an accummulation point of its own orbit.

Question (Dehornoy-Rolfsen)

Is P_{D} finitely generated as a semigroup (monoid) ?

Theorem (N)

No: the Dehornoy order is an accummulation point of its own orbit.

Proof [N-Wiest]. For $n=3$: the conjugates $\left(\preceq_{D}\right)_{h_{j}}$ accummulate \preceq_{D}, where $h_{j}=\sigma_{1}^{-1} \sigma_{2}^{j}$.

- If w is a 1-positive word: $w=\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}$, then

$$
\begin{aligned}
\sigma_{1}^{-1} \sigma_{2}^{j} w \sigma_{2}^{-j} \sigma_{1} & =\underline{\sigma_{1}^{-1} \sigma_{2}^{j}\left(\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}\right) \sigma_{2}^{-j} \sigma_{1}} \\
& =\underline{\sigma_{2} \sigma_{1}^{j+k_{1}} \sigma_{2}^{-1}} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{l-1}} \sigma_{1} \sigma_{2}^{k_{\ell}} \sigma_{2}^{-j} \sigma_{1}
\end{aligned}
$$

Thus $\sigma_{1} \sigma_{2}^{-j} w \sigma_{2}^{j} \sigma_{1}$ is 1-positive for sufficiently large j (namely for $\left.j>-k_{1}\right)$.

- If w is a 1-positive word: $w=\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}$, then

$$
\begin{aligned}
\sigma_{1}^{-1} \sigma_{2}^{j} w \sigma_{2}^{-j} \sigma_{1} & =\underline{\sigma_{1}^{-1} \sigma_{2}^{j}\left(\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}\right) \sigma_{2}^{-j} \sigma_{1}} \\
& =\underline{\sigma_{2} \sigma_{1}^{j+k_{1}} \sigma_{2}^{-1}} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}} \sigma_{2}^{-j} \sigma_{1}
\end{aligned}
$$

Thus $\sigma_{1} \sigma_{2}^{-j} w \sigma_{2}^{j} \sigma_{1}$ is 1-positive for sufficiently large j (namely for $j>-k_{1}$).

- If w is 2-positive: $w=\sigma_{2}^{k}(k>0)$, then...
- If w is a 1-positive word: $w=\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}$, then

$$
\begin{aligned}
\sigma_{1}^{-1} \sigma_{2}^{j} w \sigma_{2}^{-j} \sigma_{1} & =\underline{\sigma_{1}^{-1} \sigma_{2}^{j}\left(\sigma_{2}^{k_{1}} \sigma_{1} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}}\right) \sigma_{2}^{-j} \sigma_{1}} \\
& =\underline{\sigma_{2} \sigma_{1}^{j+k_{1}} \sigma_{2}^{-1}} \sigma_{2}^{k_{2}} \sigma_{1} \ldots \sigma_{2}^{k_{\ell-1}} \sigma_{1} \sigma_{2}^{k_{\ell}} \sigma_{2}^{-j} \sigma_{1}
\end{aligned}
$$

Thus $\sigma_{1} \sigma_{2}^{-j} w \sigma_{2}^{j} \sigma_{1}$ is 1-positive for sufficiently large j (namely for $j>-k_{1}$).

- If w is 2-positive: $w=\sigma_{2}^{k}(k>0)$, then...
- Finally, $\left(\prec_{D}\right)_{j}$ is different from \prec_{D} for all positive integers j, since its smallest positive element is the conjugate of σ_{2} by $\sigma_{2}^{-j} \sigma_{1}$, and this is different from σ_{2} (the smallest element of \preceq_{D}).

Nielsen-Thurston orders (Short-Wiest)

Recall that B_{n} is the mapping class group of a closed disk D_{n} with n punctures.

Recall that B_{n} is the mapping class group of a closed disk D_{n} with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point.

Recall that B_{n} is the mapping class group of a closed disk D_{n} with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.

Recall that B_{n} is the mapping class group of a closed disk D_{n} with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.
$f \succ g$ if the endpoint of $f(\Gamma)$ is to the right of $g(\Gamma)$

Recall that B_{n} is the mapping class group of a closed disk D_{n} with n punctures. This group acts on the boundary of a region of the hyperbolic disk fixing a point. We thus get an action on the set of geodesics starting at the fixed point.
$f \succ g$ if the endpoint of $f(\Gamma)$ is to the right of $g(\Gamma)$

For many geodesics Γ, this gives a total (left-invariant) ordering (se so-called Nielsen-Thurston ordering associated to Γ).

Theorem (N-Wiest)

No Nielsen-Thurston order is isolated in the space of braid orders.

Theorem (Kim-Rolfsen)

Pure braid groups are bi-orderable.

Theorem (Kim-Rolfsen)

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)
For $n \geq 5$, no bi-order o $P B_{n}$ extends into a left-order of B_{n}.

Theorem (Kim-Rolfsen)

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)
For $n \geq 5$, no bi-order o $P B_{n}$ extends into a left-order of B_{n}.

- If a left-order restricted to a finite-index subgroup is Conradian, then it is Conradian.

Theorem (Kim-Rolfsen)

Pure braid groups are bi-orderable.

Theorem (Rhemtulla-Rolfsen, Dubrovina-Dubrovin)

For $n \geq 5$, no bi-order o $P B_{n}$ extends into a left-order of B_{n}.

- If a left-order restricted to a finite-index subgroup is Conradian, then it is Conradian.
- For $n \geq 5$, the commutator subgroup B_{n}^{\prime} is (finitely-generated and) perfect (hence B_{n} is not locally indicable).

Lemma

If the restriction of a left-order \preceq on 「 to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Lemma

If the restriction of a left-order \preceq on 「 to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}.

Lemma

If the restriction of a left-order \preceq on 「 to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n}
$$

Lemma

If the restriction of a left-order \preceq on 「 to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Lemma

If the restriction of a left-order \preceq on Γ to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Claim: Either $f g \succ g$ or $f g^{2 n} \succ g$.

Lemma

If the restriction of a left-order \preceq on 「 to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Claim: Either $f g \succ g$ or $f g^{2 n} \succ g$.
Otherwise,

$$
g^{-1} f g \prec i d, \quad g^{-1} f g^{2 n} \prec i d .
$$

Lemma

If the restriction of a left-order \preceq on Γ to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Claim: Either $f g \succ g$ or $f g^{2 n} \succ g$.
Otherwise,

$$
g^{-1} f g \prec i d, \quad g^{-1} f g^{2 n} \prec i d .
$$

$$
i d \prec g^{-1} f^{m} g^{2 n}
$$

Lemma

If the restriction of a left-order \preceq on Γ to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Claim: Either $f g \succ g$ or $f g^{2 n} \succ g$.
Otherwise,

$$
g^{-1} f g \prec i d, \quad g^{-1} f g^{2 n} \prec i d
$$

$$
i d \prec g^{-1} f^{m} g^{2 n}=\left(g^{-1} f g\right)^{m-1}\left(g^{-1} f g^{2 n}\right)
$$

Lemma

If the restriction of a left-order \preceq on Γ to a finite-index subgroup Γ_{0} is Conradian, then \preceq is Conradian.

Proof. Let $f \succ$ id and $g \succ$ id be in Γ. For positive m, n, both f^{m} and g^{n} belong to Γ_{0}. Hence,

$$
f^{m} g^{2 n} \succ g^{n} \succ g .
$$

Claim: Either $f g \succ g$ or $f g^{2 n} \succ g$.
Otherwise,

$$
g^{-1} f g \prec i d, \quad g^{-1} f g^{2 n} \prec i d
$$

$$
i d \prec g^{-1} f^{m} g^{2 n}=\left(g^{-1} f g\right)^{m-1}\left(g^{-1} f g^{2 n}\right) \prec i d .
$$

