Groups, Orders, and Dynamics Third Lecture

Andrés Navas, USACH

YGGT meeting
HAIFA, February 2013

- Probabilistic and dynamical aspects of (left) orderable groups.
A. Navas; see
http://imerl.fing.edu.uy/coloquio2/materiales/Curso_Navas.pdf
- Orderable Groups.
R. Botto-Mura, A. Rhemtulla.
- Right-ordered Groups.
V. Kopytov, V. Medvedev.

Spaces of orders

$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology)

Spaces of orders

$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology) $\mathcal{C O}(\Gamma)$: space of Conrad-orderings

Spaces of orders

$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology) $\mathcal{C O}(\Gamma)$: space of Conrad-orderings
$\mathcal{B O}(\Gamma)$: space of bi-orderings
$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology) $\mathcal{C O}(\Gamma)$: space of Conrad-orderings $\mathcal{B O}(\Gamma)$: space of bi-orderings

■ The space of orders of \mathbb{Z} is made up of two points.
$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology) $\mathcal{C O}(\Gamma)$: space of Conrad-orderings $\mathcal{B O}(\Gamma)$: space of bi-orderings

■ The space of orders of \mathbb{Z} is made up of two points.

- The space of orders of \mathbb{Z}^{2} is a Cantor set.
$\mathcal{L O}(\Gamma)$: space of all left-orderings on Γ (Chabauty topology) $\mathcal{C O}(\Gamma)$: space of Conrad-orderings
$\mathcal{B O}(\Gamma)$: space of bi-orderings
- The space of orders of \mathbb{Z} is made up of two points.
- The space of orders of \mathbb{Z}^{2} is a Cantor set.

General results

Theorem (Linnell)

The space of left-orders is either finite or uncountable.

General results

Theorem (Linnell)

The space of left-orders is either finite or uncountable.

- Groups with finitely many left-orders have been classified by Tararin (they are all solvable).

General results

Theorem (Linnell)

The space of left-orders is either finite or uncountable.

- Groups with finitely many left-orders have been classified by Tararin (they are all solvable).

Theorem (Rivas)

The space of C-orders is either finite or homeomorphic to the Cantor set.

The free group $F_{n}, n \geq 2$

Theorem (McCleary, N, Clay, Rivas)

The space of left-orders of $F_{n}, n \geq 2$, is a Cantor set.

Theorem (McCleary, N, Clay, Rivas)

The space of left-orders of $F_{n}, n \geq 2$, is a Cantor set.

Theorem (Clay, Rivas)

There exist left-orders on $F_{n}, n \geq 2$, having dense orbits under the conjugacy action.

Lemma (Linnell)

If the positive cone is finitely generated as a semigroup, then the corresponding left-order is isolated.

Lemma (Linnell)

If the positive cone is finitely generated as a semigroup, then the corresponding left-order is isolated.

Proof. Assume that g_{1}, \ldots, g_{k} generate P_{\preceq}. If \preceq^{\prime} is close to \preceq, then all these g_{i} are positive for \preceq^{\prime}, hence

$$
P_{\preceq} \subset P_{\preceq^{\prime}} .
$$

Similarly,

$$
P_{\preceq}^{-1} \subset P_{\preceq^{\prime}}^{-1} .
$$

This forces equality.

There are no finitely many elements g_{1}, \ldots, g_{k} in F_{n} such that the semigroup generated by them is disjoint from the semigroup of inverses and every nontrivial group elements is in one of these.

There are no finitely many elements g_{1}, \ldots, g_{k} in F_{n} such that the semigroup generated by them is disjoint from the semigroup of inverses and every nontrivial group elements is in one of these.

Question

Does there exist a finitely generated semigroup S of F_{2} that is disjoint from its inverse and such that every group element f can be written in the form

$$
f=g h^{-1}
$$

with g, h in $S \cup\{i d\} ?$

$$
K:=\langle a, b ; b a b=a\rangle
$$

$$
\begin{gathered}
K:=\langle a, b ; b a b=a\rangle \\
K=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\} \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
K:=\langle a, b ; b a b=a\rangle \\
\\
\hline \\
\hline \\
\hline
\end{gathered}
$$

- $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; R\right\rangle$: braid group
- $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; R\right\rangle$: braid group

Theorem (Dubrovina-Dubrovin)

$\mathcal{L O}\left(B_{n}\right)$ has an isolated point coming from a decomposition

$$
\begin{gathered}
B_{n}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle^{+} \sqcup\left\langle c_{1}^{-1}, \ldots, c_{n-1}^{-1}\right\rangle^{+} \sqcup\{i d\} \\
c_{i}=\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-1}\right)^{(-1)^{i-1}}
\end{gathered}
$$

- $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; R\right\rangle$: braid group

Theorem (Dubrovina-Dubrovin)

$\mathcal{L O}\left(B_{n}\right)$ has an isolated point coming from a decomposition

$$
\begin{gathered}
B_{n}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle^{+} \sqcup\left\langle c_{1}^{-1}, \ldots, c_{n-1}^{-1}\right\rangle^{+} \sqcup\{i d\} \\
c_{i}=\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-1}\right)^{(-1)^{i-1}}
\end{gathered}
$$

- For $n=3: \quad c_{1}:=\sigma_{1} \sigma_{2}$ and $c_{2}:=\sigma_{2}^{-1}$
- $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; R\right\rangle$: braid group

Theorem (Dubrovina-Dubrovin)

$\mathcal{L O}\left(B_{n}\right)$ has an isolated point coming from a decomposition

$$
\begin{gathered}
B_{n}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle^{+} \sqcup\left\langle c_{1}^{-1}, \ldots, c_{n-1}^{-1}\right\rangle^{+} \sqcup\{i d\} \\
c_{i}=\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-1}\right)^{(-1)^{i-1}}
\end{gathered}
$$

- For $n=3: \quad c_{1}:=\sigma_{1} \sigma_{2}$ and $c_{2}:=\sigma_{2}^{-1}$

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2}: \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

- $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; R\right\rangle$: braid group

Theorem (Dubrovina-Dubrovin)

$\mathcal{L O}\left(B_{n}\right)$ has an isolated point coming from a decomposition

$$
\begin{gathered}
B_{n}=\left\langle c_{1}, \ldots, c_{n-1}\right\rangle^{+} \sqcup\left\langle c_{1}^{-1}, \ldots, c_{n-1}^{-1}\right\rangle^{+} \sqcup\{i d\} \\
c_{i}=\left(\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-1}\right)^{(-1)^{i-1}}
\end{gathered}
$$

- For $n=3: \quad c_{1}:=\sigma_{1} \sigma_{2}$ and $c_{2}:=\sigma_{2}^{-1}$

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2}: \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle=\left\langle c_{1}, c_{2}: c_{2} c_{1}^{2} c_{2}=c_{1}\right\rangle
$$

The (non-standard) Cayley graph of $\quad B_{3}$

The (non-standard) Cayley graph of $\quad B_{3}$

$$
\left\langle a, b: b a^{n} b=a\right\rangle
$$

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\operatorname{PSL}}(2, \mathbb{R})(\mathrm{N})$.

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\operatorname{PSL}}(2, \mathbb{R})(N)$.

■ It is an amalgamated product over a central element (Ito).

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\mathrm{PSL}}(2, \mathbb{R})(\mathrm{N})$.

■ It is an amalgamated product over a central element (Ito).

- It is given by a triangular presentation and the positive monoid is of O-type (Dehornoy)

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\mathrm{PSL}}(2, \mathbb{R})(\mathrm{N})$.
- It is an amalgamated product over a central element (Ito).
- It is given by a triangular presentation and the positive monoid is of O-type (Dehornoy)

$$
\left\langle a, b ; a=b a^{2} b a^{2} b a^{2} b\right\rangle
$$

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\mathrm{PSL}}(2, \mathbb{R})(\mathrm{N})$.
- It is an amalgamated product over a central element (Ito).
- It is given by a triangular presentation and the positive monoid is of O-type (Dehornoy)

$$
\begin{gathered}
\left\langle a, b ; a=b a^{2} b a^{2} b a^{2} b\right\rangle \\
\left\langle a, b, c ; a=b a^{p} b, b=c b a^{r} c\right\rangle, \quad(p+1) / r
\end{gathered}
$$

$$
\left\langle a, b: b a^{n} b=a\right\rangle=\langle a, b\rangle^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle^{+} \sqcup\{i d\}:
$$

- It fits nicely into $\widetilde{\mathrm{PSL}}(2, \mathbb{R})(\mathrm{N})$.
- It is an amalgamated product over a central element (Ito).
- It is given by a triangular presentation and the positive monoid is of O-type (Dehornoy)

$$
\begin{gathered}
\left\langle a, b ; a=b a^{2} b a^{2} b a^{2} b\right\rangle \\
\left\langle a, b, c ; a=b a^{p} b, b=c b a^{r} c\right\rangle, \quad(p+1) / r \\
\left\langle a_{1}, \ldots, a_{k} ; a_{i}^{m_{i}+1}=a_{i+1}^{n_{i}+1}, i=1, \ldots, k-1\right\rangle
\end{gathered}
$$

Groups with $\mathcal{L O}(\Gamma) \sim$ Cantor set

- torsion-free nilpotent groups $\neq \mathbb{Z}(\mathrm{N})$

Groups with $\mathcal{L O}(\Gamma) \sim$ Cantor set

- torsion-free nilpotent groups $\neq \mathbb{Z}(\mathrm{N})$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- torsion-free nilpotent groups $\neq \mathbb{Z}(N)$
- groups of intermediate growth -Grigorchuk-Machi- (N)

■ Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)

- torsion-free nilpotent groups $\neq \mathbb{Z}(\mathrm{N})$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)
- (countable) solvable groups -except for those in Tararin's list-(Rivas-Tessera)
- torsion-free nilpotent groups $\neq \mathbb{Z}(N)$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)
- (countable) solvable groups -except for those in Tararin's list-(Rivas-Tessera)
- free groups (McCleary, N, Clay, Rivas)
- torsion-free nilpotent groups $\neq \mathbb{Z}(N)$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)
- (countable) solvable groups -except for those in Tararin's list-(Rivas-Tessera)
- free groups (McCleary, N, Clay, Rivas)
- free products of groups (Rivas)
- torsion-free nilpotent groups $\neq \mathbb{Z}(N)$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)
- (countable) solvable groups -except for those in Tararin's list-(Rivas-Tessera)
- free groups (McCleary, N, Clay, Rivas)
- free products of groups (Rivas)

Groups with $\mathcal{L O}(\Gamma) \sim$ Cantor set

- torsion-free nilpotent groups $\neq \mathbb{Z}(\mathrm{N})$
- groups of intermediate growth -Grigorchuk-Machi- (N)
- Baumslag-Solitar groups $\left\langle a, b: b a^{n} b^{-1}=a\right\rangle$ (Rivas)
- (countable) solvable groups -except for those in Tararin's list-(Rivas-Tessera)
- free groups (McCleary, N, Clay, Rivas)
- free products of groups (Rivas)

Question

Can an amenable group with infinitely many orders have an isolated left-order?

Some spaces of bi-orders

- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).
- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).
- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).

Question

Do there exist elements a, b in F^{\prime} such that $F^{\prime}=\langle a, b\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle_{N}^{+} \sqcup\{i d\}$
$F^{\prime}=\left\langle a, b^{-1}\right\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b\right\rangle_{N}^{+} \sqcup\{i d\}$?

- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).

Question

Do there exist elements a, b in F^{\prime} such that $F^{\prime}=\langle a, b\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle_{N}^{+} \sqcup\{i d\}$ $F^{\prime}=\left\langle a, b^{-1}\right\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b\right\rangle_{N}^{+} \sqcup\{i d\}$?

- The space of bi-orders of Thompson's group F is the union of a Cantor set and 8 isolated points (N-Rivas).
- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).

Question

Do there exist elements a, b in F^{\prime} such that $F^{\prime}=\langle a, b\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle_{N}^{+} \sqcup\{i d\}$ $F^{\prime}=\left\langle a, b^{-1}\right\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b\right\rangle_{N}^{+} \sqcup\{i d\}$?

- The space of bi-orders of Thompson's group F is the union of a Cantor set and 8 isolated points (N-Rivas).
- $\mathcal{B O}(\Gamma)$ can be countably infinite (Buttsworth).
- The space of bi-orders of the commutator subgroup of Thompson's group F has 4 points (Dlab, N-Rivas).

Question

Do there exist elements a, b in F^{\prime} such that $F^{\prime}=\langle a, b\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b^{-1}\right\rangle_{N}^{+} \sqcup\{i d\}$
$F^{\prime}=\left\langle a, b^{-1}\right\rangle_{N}^{+} \sqcup\left\langle a^{-1}, b\right\rangle_{N}^{+} \sqcup\{i d\}$?

- The space of bi-orders of Thompson's group F is the union of a Cantor set and 8 isolated points (N-Rivas).

Question

Is the space of bi-orders of a free group homeomorphic to the Cantor set?

Bi-ordering the free group (Magnus)

■ $\mathbb{A}=\mathbb{Z}\langle X, Y\rangle$: non-Abelian ring of formal power series with integer coefficients in two independent variables X, Y.

- $\mathbb{A}=\mathbb{Z}\langle X, Y\rangle$: non-Abelian ring of formal power series with integer coefficients in two independent variables X, Y.
■ $o(k)$: subset of \mathbb{A} formed by the elements all of whose terms have degree at least k.
- $\mathbb{A}=\mathbb{Z}\langle X, Y\rangle$: non-Abelian ring of formal power series with integer coefficients in two independent variables X, Y.
■ $o(k)$: subset of \mathbb{A} formed by the elements all of whose terms have degree at least k.
- Fact: the subset $L=1+o(1):=\{1+S: S \in o(1)\}$ is a subgroup (under multiplication) of \mathbb{A}. Moreover, if f, g are (free) generators of F_{2}, the map ϕ sending f (resp. g) to the element $1+X($ resp. $1+Y)$ in \mathbb{A} extends in a unique way into an injective homomorphism $\phi: F_{2} \rightarrow L$.

■ $\mathbb{A}=\mathbb{Z}\langle X, Y\rangle$: non-Abelian ring of formal power series with integer coefficients in two independent variables X, Y.

- $o(k)$: subset of \mathbb{A} formed by the elements all of whose terms have degree at least k.
- Fact: the subset $L=1+o(1):=\{1+S: S \in o(1)\}$ is a subgroup (under multiplication) of \mathbb{A}. Moreover, if f, g are (free) generators of F_{2}, the map ϕ sending f (resp. g) to the element $1+X($ resp. $1+Y)$ in \mathbb{A} extends in a unique way into an injective homomorphism $\phi: F_{2} \rightarrow L$.
- Fix a lexicographic type order relation on L which is bi-invariant under multiplication by elements in L (notice that this order will be not invariant under multiplication by elements in \mathbb{A}). Then induce a lexicographically type bi-invariant order.

Folklore principle. A group is left-orderable if and only if it acts by orientation-preserving homeomorphisms of the real line.

Folklore principle. A group is left-orderable if and only if it acts by orientation-preserving homeomorphisms of the real line.

- Given $\Gamma \subset$ Homeo $_{+}(\mathbb{R})$ we may fix a dense sequence $\left(x_{n}\right)$ of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f\left(x_{n}\right) \neq g\left(x_{n}\right)$ is such that $f\left(x_{n}\right)<g\left(x_{n}\right)$ (a "dynamical lexicographic ordering").

Folklore principle. A group is left-orderable if and only if it acts by orientation-preserving homeomorphisms of the real line.

- Given $\Gamma \subset$ Homeo $_{+}(\mathbb{R})$ we may fix a dense sequence $\left(x_{n}\right)$ of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f\left(x_{n}\right) \neq g\left(x_{n}\right)$ is such that $f\left(x_{n}\right)<g\left(x_{n}\right)$ (a "dynamical lexicographic ordering").
- Given an ordering \preceq on a countable group Γ, let $p: \Gamma \rightarrow \mathbb{R}$ be an order-preserving map (with $p(i d)=0$). Define an action of Γ on $p(\Gamma)$ by letting $g(p(h))=p(g h)$. This action may be extended continuously to the whole line... ("dynamical realization").

Folklore principle. A group is left-orderable if and only if it acts by orientation-preserving homeomorphisms of the real line.

- Given $\Gamma \subset$ Homeo $_{+}(\mathbb{R})$ we may fix a dense sequence $\left(x_{n}\right)$ of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f\left(x_{n}\right) \neq g\left(x_{n}\right)$ is such that $f\left(x_{n}\right)<g\left(x_{n}\right)$ (a "dynamical lexicographic ordering").
- Given an ordering \preceq on a countable group Γ, let $p: \Gamma \rightarrow \mathbb{R}$ be an order-preserving map (with $p(i d)=0$). Define an action of Γ on $p(\Gamma)$ by letting $g(p(h))=p(g h)$. This action may be extended continuously to the whole line... ("dynamical realization").

Remark. These constructions are not in correspondence (e.g. there are actions that are not dynamical realizations).

Folklore principle. A group is left-orderable if and only if it acts by orientation-preserving homeomorphisms of the real line.

- Given $\Gamma \subset$ Homeo $_{+}(\mathbb{R})$ we may fix a dense sequence $\left(x_{n}\right)$ of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f\left(x_{n}\right) \neq g\left(x_{n}\right)$ is such that $f\left(x_{n}\right)<g\left(x_{n}\right)$ (a "dynamical lexicographic ordering").
- Given an ordering \preceq on a countable group Γ, let $p: \Gamma \rightarrow \mathbb{R}$ be an order-preserving map (with $p(i d)=0$). Define an action of Γ on $p(\Gamma)$ by letting $g(p(h))=p(g h)$. This action may be extended continuously to the whole line... ("dynamical realization").
Remark. These constructions are not in correspondence (e.g. there are actions that are not dynamical realizations). This may be used to create many new orders on a given group !
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Perturb slightly the generators of F_{n}, and induce a new order on the group generated by the new homeomorphisms via the dynamically lexicographical procedure.
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Perturb slightly the generators of F_{n}, and induce a new order on the group generated by the new homeomorphisms via the dynamically lexicographical procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no nontrivial relation).
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Perturb slightly the generators of F_{n}, and induce a new order on the group generated by the new homeomorphisms via the dynamically lexicographical procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no nontrivial relation).
- Therefore, the new ordering "lives" on F_{n}. If the perturbation is small, then the new order is very close to the original one.
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Perturb slightly the generators of F_{n}, and induce a new order on the group generated by the new homeomorphisms via the dynamically lexicographical procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no nontrivial relation).
- Therefore, the new ordering "lives" on F_{n}. If the perturbation is small, then the new order is very close to the original one.
- On the other hand, the new order does not coincide with the original one if the dynamical realization is "non structurally stable" (which holds for free group actions).
- Given an ordering \preceq on F_{n}, let us consider the corresponding dynamical realization.
- Perturb slightly the generators of F_{n}, and induce a new order on the group generated by the new homeomorphisms via the dynamically lexicographical procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no nontrivial relation).
- Therefore, the new ordering "lives" on F_{n}. If the perturbation is small, then the new order is very close to the original one.
- On the other hand, the new order does not coincide with the original one if the dynamical realization is "non structurally stable" (which holds for free group actions).
- The space of orders of a free product is a Cantor set (Rivas).

A dense orbit in $\mathcal{L O}\left(F_{2}\right)$

A dense orbit in $\mathcal{L O}\left(F_{2}\right)$

- Fix a dense sequence \preceq_{k} in $\mathcal{L O}\left(F_{n}\right)$, and consider the corresponding dynamical realizations $\left\langle f_{k}, g_{k}\right\rangle$.
- Fix a dense sequence \preceq_{k} in $\mathcal{L O}\left(F_{n}\right)$, and consider the corresponding dynamical realizations $\left\langle f_{k}, g_{k}\right\rangle$.
- Choose large-enough "windows" in the real line (centered at the origin) for these realization to get pieces of homeomorphisms and paste them together into single f and g.
- Fix a dense sequence \preceq_{k} in $\mathcal{L O}\left(F_{n}\right)$, and consider the corresponding dynamical realizations $\left\langle f_{k}, g_{k}\right\rangle$.
- Choose large-enough "windows" in the real line (centered at the origin) for these realization to get pieces of homeomorphisms and paste them together into single f and g.
- Do this carefully in order to ensure that the centers of these windows lie in the same orbit (so that in particular there is no global fixed point for $\langle f, g\rangle$).
- Fix a dense sequence \preceq_{k} in $\mathcal{L O}\left(F_{n}\right)$, and consider the corresponding dynamical realizations $\left\langle f_{k}, g_{k}\right\rangle$.
- Choose large-enough "windows" in the real line (centered at the origin) for these realization to get pieces of homeomorphisms and paste them together into single f and g.
- Do this carefully in order to ensure that the centers of these windows lie in the same orbit (so that in particular there is no global fixed point for $\langle f, g\rangle$).
- Consider the dynamically lexicographic order \preceq induced by this action.

A dense orbit in $\mathcal{L O}\left(F_{2}\right)$

- Fix a dense sequence \preceq_{k} in $\mathcal{L O}\left(F_{n}\right)$, and consider the corresponding dynamical realizations $\left\langle f_{k}, g_{k}\right\rangle$.
- Choose large-enough "windows" in the real line (centered at the origin) for these realization to get pieces of homeomorphisms and paste them together into single f and g.
- Do this carefully in order to ensure that the centers of these windows lie in the same orbit (so that in particular there is no global fixed point for $\langle f, g\rangle$).
- Consider the dynamically lexicographic order \preceq induced by this action.
- Since the conjugacy action corresponds to moving the reference point, under this action one can detect all orders \preceq_{k} over large balls as (restrictions of) conjugates of \preceq.

