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Spaces of orders

LO(Γ): space of all left-orderings on Γ (Chabauty topology)

CO(Γ): space of Conrad-orderings
BO(Γ): space of bi-orderings

The space of orders of Z is made up of two points.
The space of orders of Z2 is a Cantor set.
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General results

Theorem (Linnell)

The space of left-orders is either finite or uncountable.

• Groups with finitely many left-orders have been classified by
Tararin (they are all solvable).

Theorem (Rivas)

The space of C -orders is either finite or homeomorphic to the
Cantor set.
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The free group Fn, n ≥ 2

Theorem (McCleary, N, Clay, Rivas)

The space of left-orders of Fn, n ≥ 2, is a Cantor set.

Theorem (Clay, Rivas)

There exist left-orders on Fn, n ≥ 2, having dense orbits under the
conjugacy action.
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Detecting isolated left-orders

Lemma (Linnell)

If the positive cone is finitely generated as a semigroup, then the
corresponding left-order is isolated.

Proof. Assume that g1, . . . , gk generate P�. If �′ is close to �,
then all these gi are positive for �′, hence

P� ⊂ P�′ .

Similarly,
P−1� ⊂ P−1�′ .

This forces equality.
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Back to free groups

There are no finitely many elements g1, . . . , gk in Fn such that the
semigroup generated by them is disjoint from the semigroup of
inverses and every nontrivial group elements is in one of these.

Question

Does there exist a finitely generated semigroup S of F2 that is
disjoint from its inverse and such that every group element f can
be written in the form

f = gh−1

with g , h in S ∪ {id}?
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Examples of finitely generated positive cones I

K := 〈a, b; bab = a〉

K = 〈a, b〉+ t 〈a−1, b−1〉+ t {id}
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Examples of finitely generated positive cones I
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Examples of finitely generated positive cones II

• Bn = 〈σ1, . . . , σn−1;R〉: braid group

Theorem (Dubrovina-Dubrovin)

LO(Bn) has an isolated point coming from a decomposition

Bn = 〈c1, . . . , cn−1〉+ t 〈c−11 , . . . , c−1n−1〉+ t {id},

ci = (σiσi+1 · · ·σn−1)(−1)
i−1

• For n = 3: c1 := σ1σ2 and c2 := σ−12

B3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉 = 〈c1, c2 : c2c
2
1c2 = c1〉
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The (non-standard) Cayley graph of B3
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Examples of finitely generated positive cones III

〈a, b : banb = a〉

= 〈a, b〉+ t 〈a−1, b−1〉+ t {id} :

It fits nicely into P̃SL(2,R) (N).

It is an amalgamated product over a central element (Ito).

It is given by a triangular presentation and the positive
monoid is of O-type (Dehornoy)

〈a, b; a = ba2ba2ba2b〉

〈a, b, c ; a = bapb, b = cbarc〉, (p + 1)/r

〈a1, . . . , ak ; ami+1
i = ani+1

i+1 , i = 1, . . . , k − 1〉
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Groups with LO(Γ) ∼ Cantor set

torsion-free nilpotent groups 6= Z (N)

groups of intermediate growth –Grigorchuk-Machi– (N)

Baumslag-Solitar groups 〈a, b : banb−1 = a〉 (Rivas)

(countable) solvable groups –except for those in Tararin’s list–
(Rivas-Tessera)

free groups (McCleary, N, Clay, Rivas)

free products of groups (Rivas)

Question

Can an amenable group with infinitely many orders have an
isolated left-order?
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Some spaces of bi-orders

BO(Γ) can be countably infinite (Buttsworth).

The space of bi-orders of the commutator subgroup of
Thompson’s group F has 4 points (Dlab, N-Rivas).

Question

Do there exist elements a, b in F ′ such that
F ′ = 〈a, b〉+N t 〈a−1, b−1〉+N t {id}
F ′ = 〈a, b−1〉+N t 〈a−1, b〉+N t {id} ?

The space of bi-orders of Thompson’s group F is the union of
a Cantor set and 8 isolated points (N-Rivas).

Question

Is the space of bi-orders of a free group homeomorphic to the
Cantor set?
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Bi-ordering the free group (Magnus)

A=Z〈X ,Y 〉: non-Abelian ring of formal power series with
integer coefficients in two independent variables X , Y .

o(k): subset of A formed by the elements all of whose terms
have degree at least k .

Fact: the subset L = 1 + o(1) := {1 + S : S ∈ o(1)} is a
subgroup (under multiplication) of A. Moreover, if f , g are
(free) generators of F2, the map φ sending f (resp. g) to the
element 1+X (resp. 1+Y ) in A extends in a unique way into
an injective homomorphism φ : F2 → L.

Fix a lexicographic type order relation on L which is
bi-invariant under multiplication by elements in L (notice that
this order will be not invariant under multiplication by
elements in A). Then induce a lexicographically type
bi-invariant order.
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Dynamical realizations

Folklore principle. A group is left-orderable if and only if it acts
by orientation-preserving homeomorphisms of the real line.

– Given Γ⊂Homeo+(R) we may fix a dense sequence (xn) of
points in the real line and define f ≺ g if and only if the first n ≥ 1
for which f (xn) 6= g(xn) is such that f (xn) < g(xn) (a “dynamical
lexicographic ordering”).

– Given an ordering � on a countable group Γ, let p : Γ→ R be an
order-preserving map (with p(id) = 0). Define an action of Γ on
p(Γ) by letting g(p(h)) = p(gh). This action may be extended
continuously to the whole line... (“dynamical realization”).

Remark. These constructions are not in correspondence (e.g.
there are actions that are not dynamical realizations). This may be
used to create many new orders on a given group !
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LO(Fn) is a Cantor set

– Given an ordering � on Fn, let us consider the corresponding
dynamical realization.

– Perturb slightly the generators of Fn, and induce a new order on
the group generated by the new homeomorphisms via the
dynamically lexicographical procedure.

– In general, the new group is still free (generically, two
homeomorphisms satisfy no nontrivial relation).

– Therefore, the new ordering “lives” on Fn. If the perturbation is
small, then the new order is very close to the original one.

– On the other hand, the new order does not coincide with the
original one if the dynamical realization is “non structurally stable”
(which holds for free group actions).

• The space of orders of a free product is a Cantor set (Rivas).
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A dense orbit in LO(F2)

– Fix a dense sequence �k in LO(Fn), and consider the
corresponding dynamical realizations 〈fk , gk〉.
– Choose large-enough “windows” in the real line (centered at the
origin) for these realization to get pieces of homeomorphisms and
paste them together into single f and g .

– Do this carefully in order to ensure that the centers of these
windows lie in the same orbit (so that in particular there is no
global fixed point for 〈f , g〉).

– Consider the dynamically lexicographic order � induced by this
action.

– Since the conjugacy action corresponds to moving the reference
point, under this action one can detect all orders �k over large
balls as (restrictions of) conjugates of �.
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