Groups, Orders, and Dynamics Second Lecture

Andrés Navas, USACH

YGGT meeting
HAIFA, February 2013

- Probabilistic and dynamical aspects of (left) orderable groups.
A. Navas; see
http://imerl.fing.edu.uy/coloquio2/materiales/Curso_Navas.pdf
- Orderable Groups.
R. Botto-Mura, A. Rhemtulla.
- Right-ordered Groups.
V. Kopytov, V. Medvedev.

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$
■ Conrad: left-invariant and $f \succ i d, g \succ i d \Longrightarrow \exists n: f g^{n} \succ g$

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$

- Conrad: left-invariant and $f \succ i d, g \succ i d \Longrightarrow \exists n: f g^{n} \succ g$

■ Bi-invariant: left-invariant and $f \succ i d, g \in \Gamma \Longrightarrow f g \succ g$

Different types of orders

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$
■ Conrad: left-invariant and $f \succ i d, g \succ i d \Longrightarrow \exists n: f^{n} \succ g$
■ Bi-invariant: left-invariant and $f \succ i d, g \in \Gamma \Longrightarrow f g \succ g$

- Archimedean: for all $f \neq i d$ and $g \in \Gamma \Longrightarrow \exists n: f^{n} \succ g$

Different types of orders

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$
■ Conrad: left-invariant and $f \succ i d, g \succ i d \Longrightarrow \exists n: f^{n} \succ g$
■ Bi-invariant: left-invariant and $f \succ i d, g \in \Gamma \Longrightarrow f g \succ g$

- Archimedean: for all $f \neq i d$ and $g \in \Gamma \Longrightarrow \exists n: f^{n} \succ g$

■ Local: $g \neq i d, f \in \Gamma \Longrightarrow$ either $f g \succ f$ or $f g^{-1} \succ f$
■ Left-invariant: $g \succ h \Longrightarrow f g \succ f h$
■ Conrad: left-invariant and $f \succ i d, g \succ i d \Longrightarrow \exists n: f g^{n} \succ g$
■ Bi-invariant: left-invariant and $f \succ i d, g \in \Gamma \Longrightarrow f g \succ g$

- Archimedean: for all $f \neq i d$ and $g \in \Gamma \Longrightarrow \exists n: f^{n} \succ g$

Theorem (Hölder)

Every Archimedean ordered group is ordered-isomorphic to a subgroup of \mathbb{R}.

Idea of Proof. Fix $f \succ i d$ and define

$$
g \longrightarrow \lim _{m \rightarrow \infty} \frac{n}{m}, \quad f^{n-1} \preceq g^{m} \prec f^{n}
$$

- A group is locally indicable if every nontrivial finitely generated subgroup surjects into \mathbb{Z}.

Locally indicable groups

- A group is locally indicable if every nontrivial finitely generated subgroup surjects into \mathbb{Z}.

Theorem (Burns-Hale)
Locally indicable groups are left-orderable.

- A group is locally indicable if every nontrivial finitely generated subgroup surjects into \mathbb{Z}.

Theorem (Burns-Hale)

Locally indicable groups are left-orderable.

Theorem (Conrad; Brodskii, Rhemtulla-Rolfsen, N)

Local indicability is equivalent to Conrad-orderability:

$$
f \succ i d, g \succ i d \Longrightarrow f g^{n} \succ g \text { for some } n \geq 1
$$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

A concrete application

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Question

What about left-orderable groups without free subgroups?

「 : left-orderable group $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

「 : left-orderable group $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set

「 : left-orderable group $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).

「 : left-orderable group $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).
Γ acts on $\mathcal{L O}(\Gamma)$ by conjugacy:

「 : left-orderable group $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).
Γ acts on $\mathcal{L O}(\Gamma)$ by conjugacy:

$$
f_{1} \prec g f_{2} \text { iff } g f_{1} g^{-1} \prec g f_{2} g^{-1}
$$

「 : left-orderable group
 $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).
Γ acts on $\mathcal{L O}(\Gamma)$ by conjugacy:

$$
f_{1} \prec_{g} f_{2} \text { iff } g f_{1} g^{-1} \prec g f_{2} g^{-1} \text { iff } f_{1} g^{-1} \prec f_{2} g^{-1}
$$

「 : left-orderable group
 $\mathcal{L O}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).
Γ acts on $\mathcal{L O}(\Gamma)$ by conjugacy:

$$
f_{1} \prec g f_{2} \text { iff } g f_{1} g^{-1} \prec g f_{2} g^{-1} \text { iff } f_{1} g^{-1} \prec f_{2} g^{-1}
$$

$\mathcal{B O}(\Gamma)$: closed subspace
$\Gamma:$ left-orderable group
$\mathcal{L O}(\Gamma):$ set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, compact, metrizable).
Γ acts on $\mathcal{L O}(\Gamma)$ by conjugacy:

$$
f_{1} \prec g f_{2} \text { iff } g f_{1} g^{-1} \prec g f_{2} g^{-1} \text { iff } f_{1} g^{-1} \prec f_{2} g^{-1}
$$

$\mathcal{B O}(\Gamma)$: closed subspace (fixed points of this action).

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

A concrete application

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:
■ Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

A concrete application

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:

- Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

■ 「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:

- Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

■「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:

- Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

■「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f \succ_{g^{-n}} \text { id for some } n \geq 1
$$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:

- Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

■「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f \succ_{g^{-n}} \text { id for some } n \geq 1
$$

(The set of orders for which f is positive must come back to itself under iterates of g^{-1}.)

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:

- Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec g f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

■「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f \succ_{g^{-n}} \text { id for some } n \geq 1
$$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:
■ Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

- 「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$

■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f g^{n} \succ g^{n} \text { for some } n \geq 1
$$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:
■ Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec{ }_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$

- 「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$

■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f g^{n} \succ g^{n} \text { for some } n \geq 1
$$

- $g \succ i d \Longrightarrow g^{n} \succeq g$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:
■ Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$
■ 「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f g^{n} \succ g^{n} \text { for some } n \geq 1
$$

$■ g \succ i d \Longrightarrow g^{n} \succeq g \Longrightarrow f g^{n} \succ g$

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable amenable group is locally indicable.

Proof:
■ Consider the Γ-action on $\mathcal{L O}(\Gamma): f_{1} \prec_{g} f_{2}$ iff $f_{1} g^{-1} \prec f_{2} g^{-1}$
■ 「 amenable \Longrightarrow it preserves a probability measure on $\mathcal{L O}(\Gamma)$
■ Poincaré \Longrightarrow a μ-generic point \preceq in $\mathcal{L O}(\Gamma)$ is recurrent:

$$
f \succ i d, g \in \Gamma \longrightarrow f g^{n} \succ g^{n} \text { for some } n \geq 1
$$

$■ g \succ i d \Longrightarrow g^{n} \succeq g \Longrightarrow f g^{n} \succ g$

$$
\text { A } \mu \text {-generic } \preceq \text { is Conradian! }
$$

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.
Proof [Jiménez]. Assume $f \succ i d, g \succ i d$, but ${f g^{2}}^{2} \prec g$.

- $g^{-1} f g \prec i d$,

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.
Proof [Jiménez]. Assume $f \succ i d, g \succ i d$, but $f g^{2} \prec g$.

- $g^{-1} f g \prec i d$, otherwise $g^{-1} \mathrm{fg}^{2}=\left(g^{-1} f g\right) g \succ i d \Longrightarrow f g^{2} \succ g$

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.
Proof [Jiménez]. Assume $f \succ i d, g \succ i d$, but $\mathrm{fg}^{2} \prec g$.
■ $g^{-1} f g \prec i d$, otherwise $g^{-1} f^{2}=\left(g^{-1} f g\right) g \succ i d \Longrightarrow f g^{2} \succ g$

- $f g \prec g$

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.
Proof [Jiménez]. Assume $f \succ i d, g \succ i d$, but $f g^{2} \prec g$.
■ $g^{-1} f g \prec i d$, otherwise $g^{-1} f^{2}=\left(g^{-1} f g\right) g \succ i d \Longrightarrow f g^{2} \succ g$

- $f g \prec g$

Let $h:=f g$. Then for every $n \geq 1$,

Lemma

If \preceq is Conradian, then for all positive f, g, one has $f g^{2} \succeq g$.
Proof [Jiménez]. Assume $f \succ i d, g \succ i d$, but $\mathrm{fg}^{2} \prec g$.
■ $g^{-1} f g \prec i d$, otherwise $g^{-1}{f g^{2}}^{2}\left(g^{-1} f g\right) g \succ i d \Longrightarrow f g^{2} \succ g$

- $f g \prec g$

Let $h:=f g$. Then for every $n \geq 1$,

$$
\begin{aligned}
& f h^{n}=f(f g)^{n}=f(f g)^{n-2}(f g)(f g) \prec f(f g)^{n-2}(f g) g \\
&=f(f g)^{n-2} f g^{2} \prec f(f g)^{n-2} g \\
&=f(f g)^{n-3} f g^{2} \prec f(f g)^{n-3} g
\end{aligned}
$$

$$
\prec f(f g) g=f f g^{2} \prec f g=h .
$$

A group is X -orderable iff for all non-identity elements g_{1}, \ldots, g_{k} there exist exponents $\epsilon_{i} \in\{-1,+1\}$ such that:

A group is X -orderable iff for all non-identity elements g_{1}, \ldots, g_{k} there exist exponents $\epsilon_{i} \in\{-1,+1\}$ such that:

■ $\mathrm{X}=$ left: id does not belong to the smallest subsemigroup containing $g_{i}^{\epsilon_{i}}$.

A group is X -orderable iff for all non-identity elements g_{1}, \ldots, g_{k} there exist exponents $\epsilon_{i} \in\{-1,+1\}$ such that:

■ $\mathrm{X}=$ left: id does not belong to the smallest subsemigroup containing $g_{i}^{\epsilon_{i}}$.
■ $\mathrm{X}=\mathrm{bi}$: id does not belong to the smallest normal subsemigroup containing $g_{i}^{\epsilon_{i}}$.

A group is X -orderable iff for all non-identity elements g_{1}, \ldots, g_{k} there exist exponents $\epsilon_{i} \in\{-1,+1\}$ such that:

■ $\mathrm{X}=$ left: id does not belong to the smallest subsemigroup containing $g_{i}^{\epsilon_{i}}$.
■ $\mathrm{X}=\mathrm{bi}$: id does not belong to the smallest normal subsemigroup containing $g_{i}^{\epsilon_{i}}$.
■ $\mathrm{X}=$ Conrad: id does not belong to the smallest semigroup containing $g_{i}^{\epsilon_{i}}$ and that contains all elements of the form $g^{-1} f g^{2}$ for all f, g therein.

Conrad-orderability of locally-indicable groups (Brodskii)

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

- Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i j}\right)=0$.

Conrad-orderability of locally-indicable groups (Brodskii)

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

■ Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.
■ Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}^{\prime}}\right)=0$.

Conrad-orderability of locally-indicable groups (Brodskii)

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

■ Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.
■ Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}}\right)=0$.

- Take a nontrivial $\phi_{3}:\left\langle g_{i_{1}^{\prime}}, \ldots, g_{i_{k^{\prime \prime}}^{\prime}}\right\rangle \rightarrow(\mathbb{R},+) \ldots$

Conrad-orderability of locally-indicable groups (Brodskii)

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

■ Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.

- Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}}\right)=0$.
■ Take a nontrivial $\phi_{3}:\left\langle g_{i_{1}^{\prime}}, \ldots, g_{i_{k^{\prime \prime}}^{\prime}}\right\rangle \rightarrow(\mathbb{R},+) \ldots$
■ Choose exponents for generators so that the nonzero ϕ takes a positive value.

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

- Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.
- Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}^{\prime}}\right)=0$.
■ Take a nontrivial $\phi_{3}:\left\langle g_{i_{1}^{\prime}}, \ldots, g_{i_{k^{\prime \prime}}^{\prime}}\right\rangle \rightarrow(\mathbb{R},+) \ldots$
■ Choose exponents for generators so that the nonzero ϕ takes a positive value.
- For every f, g in S for which a certain ϕ_{j} is defined, one has

$$
\phi_{j}\left(f^{-1} g f^{2}\right)=\phi_{j}(f)+\phi_{j}(g)
$$

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

- Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.
- Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}^{\prime}}\right)=0$.
■ Take a nontrivial $\phi_{3}:\left\langle g_{i_{1}^{\prime}}, \ldots, g_{i_{k^{\prime \prime}}^{\prime}}\right\rangle \rightarrow(\mathbb{R},+) \ldots$
■ Choose exponents for generators so that the nonzero ϕ takes a positive value.
- For every f, g in S for which a certain ϕ_{j} is defined, one has

$$
\phi_{j}\left(f^{-1} g f^{2}\right)=\phi_{j}(f)+\phi_{j}(g) \geq 0
$$

Fix nontrivial elements g_{1}, \ldots, g_{k} in Γ, and denote by S the semigroup above.

- Take a nontrivial $\phi_{1}:\left\langle g_{1}, \ldots, g_{k}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}, \ldots, i_{k^{\prime}}$ be the indices (if any) such that $\phi_{1}\left(g_{i_{j}}\right)=0$.
■ Take a nontrivial $\phi_{2}:\left\langle g_{i_{1}}, \ldots, g_{i_{k^{\prime}}}\right\rangle \rightarrow(\mathbb{R},+)$. Let $i_{1}^{\prime}, \ldots, i_{k^{\prime \prime}}^{\prime}$ be the indices in $\left\{i_{1}, \ldots, i_{k^{\prime}}\right\}$ for which $\phi_{2}\left(g_{i_{j}^{\prime}}\right)=0$.
■ Take a nontrivial $\phi_{3}:\left\langle g_{i_{1}^{\prime}}, \ldots, g_{i_{k^{\prime \prime}}^{\prime}}\right\rangle \rightarrow(\mathbb{R},+) \ldots$
■ Choose exponents for generators so that the nonzero ϕ takes a positive value.
- For every f, g in S for which a certain ϕ_{j} is defined, one has

$$
\phi_{j}\left(f^{-1} g f^{2}\right)=\phi_{j}(f)+\phi_{j}(g) \geq 0
$$

Moreover, it is "uniformly" positive if for either f or g is positive.

A dynamical view of the (non)-Conrad property

Theorem (N)

A left-order \preceq is non-Conradian iff there exist f, g, u, v in Γ such that

$$
u \prec f u \prec f v \prec g u \prec g v \prec v
$$

Theorem (N)

A left-order \preceq is non-Conradian iff there exist f, g, u, v in Γ such that

$$
u \prec f u \prec f v \prec g u \prec g v \prec v
$$

Theorem (N)

A left-order \preceq is non-Conradian iff there exist f, g, u, v in Γ such that

$$
u \prec f u \prec f v \prec g u \prec g v \prec v
$$

The lack of the Conrad property generates "interesting dynamics"

