Groups, Orders, and Dynamics Second Lecture

Andrés Navas, USACH

YGGT meeting HAIFA, February 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Probabilistic and dynamical aspects of (left) orderable groups.
 A. Navas; see http://imerl.fing.edu.uy/coloquio2/materiales/Curso_Navas.pdf

- Orderable Groups.
 R. Botto-Mura, A. Rhemtulla.
- Right-ordered Groups.
 V. Kopytov, V. Medvedev.

• Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$

Local: g ≠ id, f ∈ Γ ⇒ either fg ≻ f or fg⁻¹ ≻ f
Left-invariant: g ≻ h ⇒ fg ≻ fh

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$
- Left-invariant: $g \succ h \implies fg \succ fh$
- Conrad: left-invariant and $f \succ id, g \succ id \implies \exists n: fg^n \succ g$

- Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$
- Left-invariant: $g \succ h \implies fg \succ fh$
- Conrad: left-invariant and $f \succ id, g \succ id \implies \exists n \colon fg^n \succ g$

Bi-invariant: left-invariant and $f \succ id, g \in \Gamma \implies fg \succ g$

- Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$
- Left-invariant: $g \succ h \implies fg \succ fh$
- Conrad: left-invariant and $f \succ id, g \succ id \implies \exists n \colon fg^n \succ g$

- Bi-invariant: left-invariant and $f \succ id, g \in \Gamma \implies fg \succ g$
- Archimedean: for all $f \neq id$ and $g \in \Gamma \implies \exists n \colon f^n \succ g$

- Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$
- Left-invariant: $g \succ h \implies fg \succ fh$
- Conrad: left-invariant and $f \succ id, g \succ id \implies \exists n \colon fg^n \succ g$

- **B**i-invariant: left-invariant and $f \succ id, g \in \Gamma \implies fg \succ g$
- Archimedean: for all $f \neq id$ and $g \in \Gamma \implies \exists n \colon f^n \succ g$

- Local: $g \neq id, f \in \Gamma \implies$ either $fg \succ f$ or $fg^{-1} \succ f$
- Left-invariant: $g \succ h \implies fg \succ fh$
- Conrad: left-invariant and $f \succ id, g \succ id \implies \exists n \colon fg^n \succ g$
- **B**i-invariant: left-invariant and $f \succ id, g \in \Gamma \implies fg \succ g$
- Archimedean: for all $f \neq id$ and $g \in \Gamma \implies \exists n \colon f^n \succ g$

Theorem (Hölder)

Every Archimedean ordered group is ordered-isomorphic to a subgroup of $\mathbb R.$

Idea of Proof. Fix $f \succ id$ and define

$$g \longrightarrow \lim_{m \to \infty} \frac{n}{m}, \qquad f^{n-1} \preceq g^m \prec f'$$

• A group is <u>locally indicable</u> if every nontrivial finitely generated subgroup surjects into \mathbb{Z} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A group is <u>locally indicable</u> if every nontrivial finitely generated subgroup surjects into \mathbb{Z} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Burns-Hale)

Locally indicable groups are left-orderable.

• A group is <u>locally indicable</u> if every nontrivial finitely generated subgroup surjects into \mathbb{Z} .

Theorem (Burns-Hale)

Locally indicable groups are left-orderable.

Theorem (<u>Conrad;</u> <u>Brodskii</u>, Rhemtulla-Rolfsen, N)

Local indicability is equivalent to Conrad-orderability:

$$f \succ id, g \succ id \implies fg^n \succ g$$
 for some $n \ge 1$

Every left-orderable amenable group is locally indicable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Every left-orderable amenable group is locally indicable.

Question

What about left-orderable groups without free subgroups?

 $\label{eq:Gamma} \begin{array}{l} \Gamma \ : \ \text{left-orderable group} \\ \mathcal{LO}(\Gamma) \ : \ \text{set of all left-orders of } \Gamma \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 Γ acts on $\mathcal{LO}(\Gamma)$ by conjugacy:

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 Γ acts on $\mathcal{LO}(\Gamma)$ by conjugacy:

 $f_1 \prec_g f_2$ iff $gf_1g^{-1} \prec gf_2g^{-1}$

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 Γ acts on $\mathcal{LO}(\Gamma)$ by conjugacy:

 $f_1 \prec_g f_2$ iff $gf_1g^{-1} \prec gf_2g^{-1}$ iff $f_1g^{-1} \prec f_2g^{-1}$

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 Γ acts on $\mathcal{LO}(\Gamma)$ by conjugacy:

 $f_1 \prec_g f_2$ iff $gf_1g^{-1} \prec gf_2g^{-1}$ iff $f_1g^{-1} \prec f_2g^{-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{BO}(\Gamma)$: closed subspace

 $\mathcal{LO}(\Gamma)$: set of all left-orders of Γ

Topology (Ghys, Sikora)

Two orders are close if they coincide over a large finite set (totally disconnected, <u>compact</u>, metrizable).

 Γ acts on $\mathcal{LO}(\Gamma)$ by conjugacy:

 $f_1 \prec_g f_2$ iff $gf_1g^{-1} \prec gf_2g^{-1}$ iff $f_1g^{-1} \prec f_2g^{-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{BO}(\Gamma)$: closed subspace (fixed points of this action).

A concrete application

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable <u>amenable</u> group is locally indicable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A concrete application

Theorem (Witte, conjectured by Linnell, Thurston)

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

• Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$

Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

 $f \succ id, g \in \Gamma \longrightarrow f \succ_{g^{-n}} id$ for some $n \ge 1$

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

$$f \succ id, g \in \Gamma \longrightarrow f \succ_{g^{-n}} id$$
 for some $n \ge 1$

(The set of orders for which f is positive must come back to itself under iterates of g^{-1} .)

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

 $f \succ id, g \in \Gamma \longrightarrow f \succ_{g^{-n}} id$ for some $n \ge 1$

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

 $f \succ id, g \in \Gamma \longrightarrow fg^n \succ g^n$ for some $n \ge 1$

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

$$f \succ id, g \in \Gamma \longrightarrow fg^n \succ g^n$$
 for some $n \ge 1$

 $\bullet g \succ id \implies g^n \succeq g$

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

$$f \succ id, g \in \Gamma \longrightarrow fg^n \succ g^n$$
 for some $n \ge 1$

 $\bullet g \succ id \implies g^n \succeq g \implies fg^n \succ g$

Every left-orderable <u>amenable</u> group is locally indicable.

Proof:

- Consider the Γ -action on $\mathcal{LO}(\Gamma)$: $f_1 \prec_g f_2$ iff $f_1g^{-1} \prec f_2g^{-1}$
- Γ amenable \implies it preserves a probability measure on $\mathcal{LO}(\Gamma)$
- Poincaré \implies a μ -generic point \leq in $\mathcal{LO}(\Gamma)$ is recurrent:

$$f \succ id, g \in \Gamma \longrightarrow fg^n \succ g^n$$
 for some $n \ge 1$

 $\bullet g \succ id \implies g^n \succeq g \implies fg^n \succ g$

A μ -generic \leq is Conradian !

Back to Conradian orders: $\mathit{fg^n} \succeq \mathit{g}$ for certain $\mathit{n} \geq 1$

<ロ> <@> < E> < E> E のQの

Back to Conradian orders: $fg^n \succeq g$ for certain $n \ge 1$

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Back to Conradian orders: $fg^n \succeq g$ for certain $n \ge 1$

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Proof [Jiménez]. Assume $f \succ id$, $g \succ id$, but $fg^2 \prec g$. $g^{-1}fg \prec id$,

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Proof [Jiménez]. Assume $f \succ id$, $g \succ id$, but $fg^2 \prec g$. $g^{-1}fg \prec id$, otherwise $g^{-1}fg^2 = (g^{-1}fg)g \succ id \implies fg^2 \succ g$

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Proof [Jiménez]. Assume $f \succ id$, $g \succ id$, but $fg^2 \prec g$. $g^{-1}fg \prec id$, otherwise $g^{-1}fg^2 = (g^{-1}fg)g \succ id \implies fg^2 \succ g$ $fg \prec g$

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Proof [Jiménez]. Assume $f \succ id$, $g \succ id$, but $fg^2 \prec g$. $g^{-1}fg \prec id$, otherwise $g^{-1}fg^2 = (g^{-1}fg)g \succ id \implies fg^2 \succ g$ $fg \prec g$

Let h := fg. Then for every n > 1,

Lemma

If \leq is Conradian, then for all positive f, g, one has $fg^2 \succeq g$.

Proof [Jiménez]. Assume $f \succ id$, $g \succ id$, but $fg^2 \prec g$. $g^{-1}fg \prec id$, otherwise $g^{-1}fg^2 = (g^{-1}fg)g \succ id \implies fg^2 \succ g$ $fg \prec g$

Let h := fg. Then for every $n \ge 1$,

$$fh^{n} = f(fg)^{n} = f(fg)^{n-2}(fg)(fg) \prec f(fg)^{n-2}(fg)g$$

= $f(fg)^{n-2}fg^{2} \prec f(fg)^{n-2}g$
= $f(fg)^{n-3}fg^{2} \prec f(fg)^{n-3}g$

$$\prec f(fg)g = ffg^2 \prec fg = h.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

X = left: id does not belong to the smallest subsemigroup containing g_i^{e_i}.

X = left: id does not belong to the smallest subsemigroup containing g_i^{c_i}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

X = bi: id does not belong to the smallest normal subsemigroup containing g^{€i}_i.

- X = left: id does not belong to the smallest subsemigroup containing g_i^{e_i}.
- X = bi: id does not belong to the smallest normal subsemigroup containing g^{ε_i}.
- X= Conrad: *id* does not belong to the smallest semigroup containing g_i^{ε_i} and that contains all elements of the form g⁻¹fg² for all f, g therein.

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

Take a nontrivial $\phi_1 \colon \langle g_1, \ldots, g_k \rangle \to (\mathbb{R}, +)$. Let $i_1, \ldots, i_{k'}$ be the indices (if any) such that $\phi_1(g_{i_j}) = 0$.

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

Take a nontrivial φ₁: ⟨g₁,...,g_k⟩ → (ℝ, +). Let i₁,..., i_{k'} be the indices (if any) such that φ₁(g_{ij}) = 0.
Take a nontrivial φ₂: ⟨g_{i1},...,g_{ik'}⟩ → (ℝ, +). Let i'₁,...,i'_{k''} be the indices in {i₁,...,i_{k'}} for which φ₂(g_{ij}) = 0.

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

Take a nontrivial φ₁: ⟨g₁,...,g_k⟩ → (ℝ, +). Let i₁,..., i_{k'} be the indices (if any) such that φ₁(g_{ij}) = 0.
Take a nontrivial φ₂: ⟨g_{i1},...,g_{ik'}⟩ → (ℝ, +).

- Let $i'_1, \ldots, i'_{k''}$ be the indices in $\{i_1, \ldots, i_{k'}\}$ for which $\phi_2(g_{i'_1}) = 0$.
- Take a nontrivial $\phi_3 \colon \langle g_{i'_1}, \dots, g_{i'_{k''}} \rangle \to (\mathbb{R}, +)...$

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

- Take a nontrivial $\phi_1 : \langle g_1, \ldots, g_k \rangle \to (\mathbb{R}, +)$. Let $i_1, \ldots, i_{k'}$ be the indices (if any) such that $\phi_1(g_{i_j}) = 0$.
- Take a nontrivial $\phi_2 \colon \langle g_{i_1}, \ldots, g_{i_{k'}} \rangle \to (\mathbb{R}, +)$. Let $i'_1, \ldots, i'_{k''}$ be the indices in $\{i_1, \ldots, i_{k'}\}$ for which $\phi_2(g_{i'_j}) = 0$.
- Take a nontrivial $\phi_3 \colon \langle g_{i'_1}, \dots, g_{i'_{k''}} \rangle \to (\mathbb{R}, +)...$
- Choose exponents for generators so that the nonzero ϕ takes a positive value.

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

- Take a nontrivial $\phi_1 : \langle g_1, \ldots, g_k \rangle \to (\mathbb{R}, +)$. Let $i_1, \ldots, i_{k'}$ be the indices (if any) such that $\phi_1(g_{i_j}) = 0$.
- Take a nontrivial $\phi_2 : \langle g_{i_1}, \dots, g_{i_{k'}} \rangle \to (\mathbb{R}, +)$. Let $i'_1, \dots, i'_{k''}$ be the indices in $\{i_1, \dots, i_{k'}\}$ for which $\phi_2(g_{i'_j}) = 0$.
- Take a nontrivial $\phi_3 \colon \langle g_{i'_1}, \dots, g_{i'_{k''}} \rangle \to (\mathbb{R}, +)...$
- Choose exponents for generators so that the nonzero \u03c6 takes a positive value.
- For every f, g in S for which a certain ϕ_j is defined, one has

$$\phi_j(f^{-1}gf^2) = \phi_j(f) + \phi_j(g)$$

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

- Take a nontrivial $\phi_1 : \langle g_1, \ldots, g_k \rangle \to (\mathbb{R}, +)$. Let $i_1, \ldots, i_{k'}$ be the indices (if any) such that $\phi_1(g_{i_j}) = 0$.
- Take a nontrivial $\phi_2 \colon \langle g_{i_1}, \dots, g_{i_{k'}} \rangle \to (\mathbb{R}, +)$. Let $i'_1, \dots, i'_{k''}$ be the indices in $\{i_1, \dots, i_{k'}\}$ for which $\phi_2(g_{i'_j}) = 0$.
- Take a nontrivial $\phi_3 \colon \langle g_{i'_1}, \dots, g_{i'_{k''}} \rangle \to (\mathbb{R}, +)...$
- Choose exponents for generators so that the nonzero \u03c6 takes a positive value.
- For every f, g in S for which a certain ϕ_j is defined, one has

$$\phi_j(f^{-1}gf^2) = \phi_j(f) + \phi_j(g) \ge 0.$$

Fix nontrivial elements g_1, \ldots, g_k in Γ , and denote by S the semigroup above.

- Take a nontrivial $\phi_1 : \langle g_1, \ldots, g_k \rangle \to (\mathbb{R}, +)$. Let $i_1, \ldots, i_{k'}$ be the indices (if any) such that $\phi_1(g_{i_j}) = 0$.
- Take a nontrivial $\phi_2 \colon \langle g_{i_1}, \dots, g_{i_{k'}} \rangle \to (\mathbb{R}, +)$. Let $i'_1, \dots, i'_{k''}$ be the indices in $\{i_1, \dots, i_{k'}\}$ for which $\phi_2(g_{i'_j}) = 0$.
- Take a nontrivial $\phi_3 \colon \langle g_{i'_1}, \dots, g_{i'_{k''}} \rangle \to (\mathbb{R}, +)...$
- Choose exponents for generators so that the nonzero \u03c6 takes a positive value.
- For every f, g in S for which a certain ϕ_j is defined, one has

$$\phi_j(f^{-1}gf^2) = \phi_j(f) + \phi_j(g) \ge 0.$$

Moreover, it is "uniformly" positive if for either f or g is positive.

(4日) (個) (目) (目) (目) (の)

Theorem (N)

A left-order \preceq is non-Conradian iff there exist f,g,u,v in Γ such that

$$u \prec fu \prec fv \prec gu \prec gv \prec v$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (N)

A left-order \leq is non-Conradian iff there exist f, g, u, v in Γ such that

$$u \prec fu \prec fv \prec gu \prec gv \prec v$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (N)

A left-order \preceq is non-Conradian iff there exist f,g,u,v in Γ such that

$$u \prec fu \prec fv \prec gu \prec gv \prec v$$

The lack of the Conrad property generates "interesting dynamics"

◆□> ◆□> ◆豆> ◆豆> □豆