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Abstract

According to the classical Plante-Thurston Theorem, all nilpotent groups of C2-diffeomorphisms of
the closed interval are Abelian. Using techniques coming from the works of Denjoy and Pixton, Farb and
Franks constructed a faithful action by C1-diffeomorphisms of [0, 1] for every finitely-generated, torsion-
free, non-Abelian nilpotent group. In this work, we give a version of this construction that is sharp in
what concerns the Hölder regularity of the derivatives. Half of the proof relies on results on random
paths on Heisenberg-like groups that are interesting by themselves.
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1 Introduction

Much work has been done on centralizers of C2-diffeomorphisms of the interval [3, 9, 16, 17]. This
theory has been extensively used for studying the algebraic constraints of finitely-generated subgroups of
Diff2

+([0, 1]). For example, using the famous Kopell lemma [9], Plante and Thurston showed that nilpotent
groups of C2-diffeomorphisms of [0, 1[ (resp. ]0, 1[) are Abelian (resp. metabelian); see [14].

As is well known, most of the rigidity properties are lost when we consider centralizers of C1-diffeomor-
phisms. In relation to Plante-Thurston’s theorem, this fact is corroborated by the work of Farb and Franks.
In [4], they construct an embedding φ

FF
of Nd into Diff1

+([0, 1]), where Nd denotes the (nilpotent) group
of (d + 1) × (d + 1) lower-triangular matrices whose entries are integers which equal 1 on the diagonal (see
§2.1 for the details). Since every finitely-generated, torsion-free, nilpotent group embeds into Nd for some
d ≥ 1 (see [15]), one concludes that all these groups can be realized as groups of C1-diffeomorphisms of the
(closed) interval (compare [7]).

Major progress has been recently made in the understanding of the loss of rigidity for centralizers in
intermediate differentiability classes, that is, between C1 and C2 (see [2, 8, 10]). Recall that, for 0 < α < 1,
a diffeomorphism f is said to be of class C1+α if its derivative is α-Hölder continuous. In other words, there
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exists a constant M such that for all x, y,

|f ′(x)− f ′(y)| ≤M |x− y|α. (1)

We denote the group of C1+α-diffeomorphisms of [0, 1] by Diff1+α
+ ([0, 1]). In the first part of this work we

show the following result. (Notice that for d = 2, the theorem below still holds and follows from Plante-
Thurston’s theorem.)

Theorem A. If d ≥ 3 and α > 2
d(d−1) , then the action φ

FF
is not topologically conjugated to an action by

C1+α-diffeomorphisms of [0, 1].

This theorem should be considered as a partial complement to [10, Theorem B] which establishes that,
for all 0 < α < 1, every subgroup Γ of Diff1+α

+ ([0, 1]) without free subsemigroups is virtually nilpotent.
(Although the last result still holds for the open interval ]0, 1[, Theorem A above fails to be true in this
context, but it extends –with the very same proof– to the case of the half-closed interval). For the proof of
our theorem, the main technical achievement consists in controlling the distortion of suitable compositions
of elements in any regularity larger than the critical one. To do this, we develop a nontrivial modification
of the probabilistic techniques of [2, 8]. Recall that [2, Theorem B] deals with Abelian group actions that
are dynamically very similar to φ

FF
, and a direct application of it shows that φ

FF
is not conjugated to

an action by C1+α-diffeomorphisms of [0, 1[ for any α > 1
d−1 . The fact that our critical regularity here is

actually smaller relies on that compared to the Abelian actions of [2], the action φ
FF

has a more complicated
combinatorial dynamics in that the growth of certain orbits is polynomial with degree precisely equal to
d(d−1)

2 . We should point out that similar combinatorial dynamics appear for the actions of the natural
quotients of the Grigorchuk-Machi’s group [5] for which the method of this article should also provide the
best possible regularity (compare [10, Theorem A]). Moreover, it is worth mentioning that the very same
arguments show that Theorem A above still applies to topological semiconjugacies.

Although not directly related, all the results described above should be compared to (and have poten-
tial relations with) Borichev’s extension [1] to intermediate regularity of Polterovich-Sodin’s theorem [13]
concerning distortion of interval diffeomorphisms.

The second part of this work is devoted to a converse of Theorem A. The next theorem improves the
main result of [4].

Theorem B. For each d ≥ 2 and α < 2
d(d−1) , the action φ

FF
is topologically conjugated to an action by

C1+α-diffeomorphisms of [0, 1].

The proof of this theorem is based on classical constructions of Denjoy and Pixton (a clever exposition
of these techniques appears in [18]; see also [11]). Nevertheless, putting these methods in practice in the
present case is far from being straightforward. The computations are quite involved, and in this part of the
work some of them are just sketched.

As in [2, 8], here we were unable to settle the C1+ 2
d(d−1) case, though we conjecture that the rigidity (i.e.

Theorem A) still holds for this critical regularity.
Theorems A and B suggest that, attached to each finitely-generated, torsion-free nilpotent group Γ, there

should be a positive exponent α(Γ) ≤ 1 that is critical for embedding Γ into Diff1+α
+ ([0, 1]). However, it is

still unclear to us what should be the value of α(Γ). Indeed, Theorem B only deals with very particular
actions, and many nilpotent groups admit actions that are fairly different from these. In order to corroborate
this point, in the last part of this work we improve another construction of [4], thus proving the next

Theorem C. For every α < 1 and each d ≥ 1, the group Diff1+α
+ ([0, 1]) contains a metabelian subgroup of

nilpotence degree d.

Acknowledgments. We are indebted to Yves de Cornulier and Romain Tessera for a crucial remark
concerning the growth of certain orbits of the action of Nd, to Bertrand Deroin and Victor Kleptsyn for
many valuable remarks to the second part of this article, and to Takashi Tsuboi for a clever hint for the
constructions therein. The second-named author was funded by the Fondecyt Iniciación Project 11121316,
while third-named author was partially funded by the Fondecyt Project 1100536. All authors were also
funded by the Center of Dynamical Systems and Related Fields DySyRF (Anillo Project 1103, CONICYT).
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2 Non-existence of smoothing for α > 2
d(d−1)

2.1 A reminder on Farb-Franks’ action φ
FF

We deal with the group Nd of (d+1)× (d+1) lower-triangular matrices with integer entries, all of which
are equal to 1 on the diagonal. Notice that N2 corresponds to the Heisenberg group. In general, Nd is a
nilpotent group of nilpotence degree d. A nice system of generators of Nd is {f2,1, . . . , fd+1,d}, where fi,j is
the elementary matrix whose unique nonzero entry outside the diagonal is the (i, j)-entry (with i > j).

The group Nd acts linearly on Zd+1 with the affine hyperplane 1 × Zd remaining invariant. The thus-
induced action on Zd allows producing an action on the interval as follows. Let

{
Ii1,...,id: (i1, . . . , id)∈Zd

}
be a family of intervals such that the sum

∑
i1,...,id

|Ii1,...,id | is finite, say equal to 1 after normalization.
We join these intervals lexicographically on the closed interval [0, 1], and we identify fj+1,j to a certain
homeomorphism sending each interval I = Ii1,...,id into the interval J given by:

• J := Ii1+1,i2,...,id−1,id , for j = 1,

• J := Ii1,...,ij−1,ij+ij−1,ij+1,...,id , for 2≤j≤d.

It is not hard to perform this procedure in a equivariant way (for instance, using piecewise-affine maps), thus
preserving the group structure and hence obtaining an embedding of Nd into Homeo+([0, 1]). (Much harder
is to obtain an embedding into the group of diffeomorphisms.) For this action, an interval of the form Ii1,...,id
is sent by f ∈ Nd into Ij1,...,jd , where f

(
(1, i1, . . . , id)

T
)

= (1, j1, . . . , jd)
T . Notice that up to topological

conjugacy, all the actions obtained by this procedure are equivalent. This includes Farb-Franks’ action φ
FF

,
which is obtained via this method for a well-chosen family of diffeomorphisms between the intervals of type
I, J above so that the resulting fi,j ’s are C1-diffeomorphisms.

2.2 From control of distortion to the proof of Theorem A

Let us begin by stating a general principle from [2] in the form of the following

Proposition 2.1. Let f1, . . . , fk be C1-diffeomorphisms of the interval [0, 1] that commute with a C1-
diffeomorphism g. Assume that g fixes a subinterval I of [0, 1] and its restriction to I is nontrivial. Assume
moreover that for a certain 0 < α < 1 and a sequence of indexes ij ∈ {1, . . . , k}, the sum

Lα :=
∑
j≥0

∣∣fij · · · fi1(I)
∣∣α (2)

is finite. Then f1, . . . , fk cannot be all of class C1+α.

Proof. Let x0 ∈ I be such that g(x0) 6= x0. Denote by [a, b] the shortest interval containing x0 that is fixed
by g. For each j ≥ 1, n ≥ 1 and z ∈ [a, b], the equality gn = (fij · · · fi1)−1 ◦ gn ◦ (fij · · · fi1) yields

logDgn(z) = logD(fij · · · fi1)(z) + logDgn(fij · · · fi1(z))− logD(fij · · · fi1)(gn(z)).

Fix a constant M such that (1) holds for all f ∈ {f1, . . . , fk} and all x, y in [0, 1]. Letting zn := gn(z) and
noticing that zn belongs to [a, b] ⊂ I for all n ≥ 1, we obtain

| logDgn(z)| ≤ | logDgn(fij · · · fi1(z))|+
j∑

m=1

∣∣ logDfim(fim−1
· · · fi1(z))− logDfim(fim−1

· · · fi1(zn))
∣∣

≤ | logDgn(fij · · · fi1(z))|+
j∑

m=1

M
∣∣fim−1

· · · fi1(z)− fim−1
· · · fi1(zn)

∣∣α
≤ | logDgn(fij · · · fi1(z))|+M

j∑
m=1

|fim−1 · · · fi1(I)|α

≤ | logDgn(fij · · · fi1(z))|+MLα.

The length of the intervals fij · · · fi1(I) must necessarily converge to zero as j goes to infinite. Moreover,
since gn fixes I and commutes with f1, . . . , fk, on each of these intervals there must be a point at which its
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derivative equals 1. By the continuity of Dgn, we conclude that the value of Dgn(fij · · · fi1(z)) converges
to 1 as j goes to infinite. Hence we obtain Dgn(z) ≤ eMLα for all n ≥ 1 and all z ∈ [a, b], which certainly
contradicts the fact that the restriction of g to [a, b] is nontrivial. �

Let us come back to the action φ
FF

. Notice that the group Nd−1 can be naturally viewed as the subgroup
of Nd formed by the elements whose last row coincide with that of the identity. We will denote by N∗d−1 the
copy of Nd−1 inside Nd.

Notice that the element g := fd+1,1 ∈ Nd is centralized by N∗d−1. Under the action φ
FF

, this element
fixes the interval

I∗ :=
⋃
j∈Z

I0,...,0,j . (3)

Moreover, this interval is sent into a disjoint one by any nontrivial element of N∗d−1. We are hence in a
situation close to that of the preceding proposition. Thus, we need to ensure the existence of a systems of
generators for N∗d−1 and a sequence of compositions for which the associated sum (2) is finite provided that

α> 2
d(d−1) . To do this, we will use the system of generators {f2,1, f3,1, . . . , fd,1} ∪ {f2,1, f3,2, . . . , fd,d−1}.

It is worth mentioning that this is an analogous problem to that of the Zd-actions on the interval
considered in [2, Théorème B]. However, the Zd-case is easier in that the generators of the dynamics commute,
hence the orbit graph of the associated interval I∗ has a simpler structure. Indeed, the space of infinite paths
of this graph can be endowed of a natural probability measure such that for appropriately large values of
α (namely, for α > 1/d), almost every path has a finite Lα-series. In order to establish this, besides the
restriction on the exponent α, the main property of the underlying process is that the arrival probabilities
up to time k are equidistributed along the sphere of radius k (centered at the origin) for every k ≥ 1.
Although in [2] this is modeled via a Polya urn like model that charges only the positive powers of the
generators, an alternative model sharing this property that charges both positive and negative powers of the
generators is the Markov process depicted in Figure 1 below for the case d = 2 (the reader will easily check
the equidistribution property along spheres as well as the general rule for the transition probabilities; the
generalization for higher values of d is not very hard).

Remark 2.2. It seems to be an interesting and nontrivial problem to determine general conditions for an
infinite graph ensuring the existence of a Markov process satisfying the equidistribution property above.
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Let us now consider the orbit of the interval I∗ defined by (3) for the action of N∗d−1. For simplicity,
let us first deal with the case d = 3. With respect to the generators f2,1, f3,1, f3,2 of N∗2 , the orbit graph is
depicted in Figure 2 below. Here, f2,1 corresponds to the generator whose action on the the graph is moving
to the right, whereas the action of both f3,1 and f3,2 consists in moving up, the former by one unit and the
latter with an amplitude that depends on the position. (Notice that the directions of the arrows mean that
we are only considering positive powers of the generators.)

Now, the difficulty comes from that, as the reader may easily check, it is impossible to put probability
distributions on this graph yielding the equidistribution property along the spheres centered at the origin.
(This is already impossible for the sphere of radius 4.) To overcome this problem, we will use the counting
argument of (the first part of) [8], which actually corresponds to a deterministic counterpart of the random
walk argument above. Indeed, this argument is more robust in that it does not need any equidistribution
property, though it requires a certain extra argument to obtain our desired infinite path as a concatenation
of finite paths that behave nicely for certain finite processes.
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To close this section, let us finally explain why the exponent 2
d(d−1) is critical for the action φ

FF
. For

simplicity, let us first consider the case d = 3. Looking at the graph of Figure 2 above, one easily computes
the growth of the balls. This appears to be cubic, in the sense that the number of points at distance ≤n
from the origin is n3+11n+6

6 ∼ n3. These points correspond to intervals in the orbit of I∗ obtained up to
≤n compositions of the generators. Since these intervals are disjoint, the length of a typical one should be
of order ∼ 1/n3. Hence, along a generic sequence of compositions, the value of the corresponding sum Lα
should be of order ∑

n≥1

(
1

n3

)α
,

which is finite for α > 1
3 = 2

3(3−1) , as expected.

For the case of a general d ≥ 3, it is very tempting trying to argue as before for any α larger than
the inverse of the degree of growth of the graph of the orbit of I. Now, recall that according to the Bass-
Guivarch formula (see [6, Appendix]), the growth of N∗d−1 is polynomial of degree

∑d−1
i=1 i(d− i). Moreover,

the stabilizer of I under the action of N∗d−1 is the subgroup of N∗d−1 made of the matrices whose first column

is (1, 0, 0, . . . , 0)T . This subgroup naturally identifies with Nd−2, whose growth is polynomial of degree∑d−2
i=1 i(d− i− 1). The difference of these degrees equals

d−1∑
i=1

i(d− i)−
d−1∑
i=1

i(d− i− 1) =

d−1∑
i=1

i =
d(d− 1)

2
. (4)

Since the graph of the orbit of I identifies with the space of cosets Nd−1/Nd−2, one should expect that its
growth is polynomial of degree given by (4), and this is actually the case.
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2.3 Proof of Theorem A: the case d = 3

The proof of Theorem A is somewhat technical and requires hard notation. This is the reason why we
have chosen to first give the proof for the case d = 3, where most of the ideas become more transparent and
an important technical problem is overcomed by a trick consisting in the introduction of a small parameter
ε > 0. For the general case, we use a slightly modified construction keeping essentially the same arguments.
We begin with a lemma in the spirit of [8, Lemma 2.2].

Lemma 2.3. Let n ≥ 1 be an integer and let C1, C2, ε be positive constants. Let P be a set of ≤ C1n
3+ε

pairs of non-negative integers (i, j) associated to which there is a number `i,j > 0 such that
∑

(i,j)∈P `i,j ≤ 1.

Suppose that P partitioned into n′ ≥ n2/C2 (resp. n′ ≥ n2+ε/C2) disjoint subsets P1, . . . , Pn′ . Then, given
A > 1 and 1 > α > 0, the proportion of indexes m ∈ {1, . . . , n′} for which

∑
(i,j)∈Pm

`αi,j ≤
AC1−α

1 C2

n3α−1−ε(1−α)

(
resp.

∑
(i,j)∈Pm

`αi,j ≤
AC1−α

1 C2

n3α−1+εα

)
is at least 1− 1/A.

Proof. Since
∑

(i,j)∈P `i,j ≤ 1 and P consists of at most C1n
3+ε pairs, a direct application of Hölder’s

inequality yields ∑
(i,j)∈P

`αi,j ≤ (C1n
3+ε)1−α.

Hence,

1

n′

n′∑
m=1

∑
(i,j)∈Pm

`αi,j ≤
C1−α

1 n(3+ε)(1−α)

n′
,

and the latter expression is less than or equal to C1−α
1 C2n

1−3α+ε(1−α) (resp. C1−α
1 C2n

1−3α−εα). The
lemma then follows as a direct application of Chebyshev’s inequality. �

Let us now come back to the graph associated to the action φ
FF

depicted in Figure 2, and let us set
`i,j := |f i2,1f

j
3,1(I∗)|. Fix positive constants α, ε such that

α >
1

3
=

2

(3− 1)(3− 2)
, ε < max

{
3α− 1

1− α
, 1

}
. (5)

For any real numbers M ≤ N , we let [[M,N ]] := [M,N ] ∩ Z. Given an integer n ≥ 2, we consider the
set P (n) := [[n, 8n − 1]] × [[0, n2+ε]]. This set P (n) consists of 7n([n2+ε] + 1) ≤ 10n3+ε points (with [ · ]
standing for the integer part), and is partitioned into the n′ = [n2+ε] + 1 ≥ n2+ε disjoint sets (horizontal
paths) P (n, 1), P (n, 2), . . . , P (n, n′) given by

P (n,m) :=
{

(n,m), (n+ 1,m), . . . , (8n− 1,m)
}
.

By the preceding lemma, for each 0 < An < 1, the proportion of indexes m ∈ {1, . . . , n′} for which

8n−1∑
i=n

`αi,m =
∑

(i,j)∈P (n,m)

`αi,j ≤
An101−α

n3α−1+εα
(6)

is at least 1− 1/An. Notice that each path P (n,m) comes from the action of the generator f2,1.

Similarly, for each integer n ≥ 2, let us consider the set Q(n) := [[n, 2n − 1]] × [[0, n2+ε]] consisting of
n([n2+ε] + 1) ≤ 2n3+ε points. Although in general there is no partition of Q(n) into paths induced by
the action of f3,1, f3,2 all of them having the same number of points, a partition that almost satisfies this
property (and that will be sufficient for our purposes) can be defined as follows. For each n ≤ m ≤ 2n− 1
we divide the set {(m, 0), (m, 1), . . .} into n paths via the following rules:

– For each 0 ≤ j ≤ n− 2, there is a path starting at (m, j) jumping upwards of m units;

– The path starting at (m,n− 1) makes m− n jumps upwards of 1 unit and then makes a jump of m units;
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– The picture repeats “periodically”, so that each infinite path is made of n−1 consecutive jumps of m units
followed by m− n jumps of 1 unit.

Figure 3 illustrates the case where n = 3 and m = 5 though the resulting paths are disposed horizontally
instead of vertically by obvious reasons. Although one may give precise formulas for the points in each
of these paths, this is not completely necessary. The main property that we will retain is the obvious
fact that the number of points of each of them inside any rectangle [[n, 2n − 1]] × [[0,K − 1]] lies between
K
n − 2n and K

n + 2n. (An alternative construction leading to a much better -logarithmic- control of the
deviation will be given in §2.4.) In particular, we have an induced partition of Q(n) into n′′ = n2 paths
Q(n, 1), Q(n, 2), . . . , Q(n, n′′) for which the preceding lemma yields that for each An > 0, the proportion of
indexes m ∈ {1, . . . , n′′} satisfying

∑
(i,j)∈Q(n,m)

`αi,j ≤
An21−α

n3α−1−ε(1−α)
(7)

is at least 1− 1/An. Notice again that each of these paths comes from the action of the generators f3,1 and
f3,2 according to the amplitude of the jump.
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We will apply the preceding construction for each integer n = nk := 4k, where k ≥ 1. The choice of
the constants Ank is as follows. First, we let rk (resp. sk) be the minimum (resp. maximum) number of
points of a path of the form Q(nk,m) inside Q(nk). Similarly, we let r′k (resp. s′k) be the minimum (resp.
maximum) number of points in a path of the form Q(nk,m) inside P (nk−1) ∩Q(nk). Finally, we let

B :=
∏
k≥2

sk
rk

s′k
r′k
. (8)

Notice that the value of B is finite. Indeed, by the discussion above, we have

4k(1+ε) − 2 · 4k = n1+εk − 2nk ≤ rk ≤ sk ≤ n1+εk + 2nk = 4k(1+ε) + 2 · 4k

and

4k+kε−1 − 2 · 4k+1 =
n2+εk

nk+1
− 2nk+1 ≤ r′k ≤ s′k ≤

n2+εk

nk+1
+ 2nk+1 = 4k+kε−1 + 2 · 4k+1,

which easily yield the convergence of the infinite product in the definition of B. We will also use the constant

C := 4
∑
k≥1

1

2k(3α−1−ε(1−α))
. (9)

Notice again that since (5) implies that 3α− 1− ε(1− α) > 0, we have C <∞.

We now fix An1
≥ 22+k(3α−1−ε(1−α))BC such that (6) holds for n = n1 and every m in the corresponding

range. Finally, for k ≥ 2, we set
Ank := BC 2k(3α−1−ε(1−α)).

We next state a key lemma whose proof is postponed in order to proceed immediately to the proof of
Theorem A in the case d = 3.

Lemma 2.4. There are two infinite sequences of paths P (nk,m
′
k) and Q(nk,m

′′
k) such that (6) (resp. (7))

holds for n = nk and m = m′k (resp. m = m′′k) and such that P (nk,m
′
k) intersects both Q(nk,m

′′
k) and

Q(nk+1,m
′′
k+1) for all k ≥ 1.
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Figure 4
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2·4k+1 − 1 2·4k+2 − 1

Assuming this lemma, the proof of Theorem A in the case d = 3 is at hand. Indeed, the concatenation of
the sequence of finite paths provided by the lemma naturally yields an infinite path without loops which is in
correspondence with a sequence of compositions by f2,1, f3,1, f

−1
3,1 , f3,2, f

−1
3,2 (see Figure 4). By construction,

for this sequence of iterations, the value of the corresponding Lα-sum (2) for the interval I∗∗ corresponding
to the initial point of Q(n1,m

′
1) is less than or equal to

101−α
∑
k≥1

Ank
n3α−1+εαk

+ 21−α
∑
k≥1

Ank

n
3α−1−ε(1−α)
k

≤ 20An1

43α−1−ε(1−α)
+
∑
k≥2

40BC

2k(3α−1−ε(1−α))

≤ 80An14ε(1−α) + 40BC2.

This interval I∗∗ is in the orbit of I∗, from which it can be reached in no more than (2 · 41 − 1) + 4 = 11
iterations of the generator f2,1. By concatenating this finite path to the previous one, we obtain an infinite
path associated to which the Lα-sum corresponding to I∗ is finite, which allows to conclude the proof by
the arguments developed in §2.2.

All that remains for completing the proof of Theorem A in the case d = 3 is the

Proof of Lemma 2.4. The argument is similar to that of [8, Lemma 2.3], but it needs a slight modification.
Namely, for each k ≥ 1, we let D′k be the density of indexes m′ ∈ {1, . . . , [n2+εk ] + 1} such that P (nk,m

′) is
“reached” by a sequence of paths Q(n1,m

′′
1), P (n1,m

′
1), . . . , Q(nk,m

′′
k) satisfying:

– P (ni,m
′
i) intersects both Q(ni,m

′′
i ) and Q(ni+1,m

′′
i+1) for all 1 ≤ i ≤ k − 1, whereas P (nk,m

′) intersects
Q(nk,m

′′
k);

– Inequality (6) (resp. (7)) holds for (n,m) = (ni,m
′
i) whenever 1 ≤ i ≤ k−1 as well as for (n,m) = (nk,m

′)
(resp. for (n,m) = (ni,m

′′
i ) whenever 1 ≤ i ≤ k).

Similarly, we denote by D′′k the density of indexes m′′ ∈ {1, . . . , n2
k} such that Q(nk,m

′′) is reached by a
sequence of paths Q(n1,m

′′
1), P (n1,m

′
1), . . . , P (nk−1,m

′
k−1) satisfying:

– P (ni,m
′
i) intersects both Q(ni,m

′′
i ) and Q(ni+1,m

′′
i+1) for all 1 ≤ i ≤ k − 1;

– Inequality (6) (resp. (7)) holds for (n,m) = (ni,m
′
i) (resp. for (n,m) = (ni,m

′′
i )) whenever 1 ≤ i ≤ k − 1

as well as for (n,m) = (nk,m
′′).

We claim that the following relations hold:

1−D′k ≤ (1−D′′k)
sk
rk

+
1

Ank
, 1−D′′k+1 ≤ (1−D′k)

s′k+1

r′k+1

+
1

Ank+1

. (10)

Assuming this for a while, we obtain for each k ≥ 1,

1−D′k ≤ (1−D′k−1)
sk
rk

s′k
r′k

+
1

Ank

sk
rk

+
1

Ank
.

8



Using induction, this easily yields

1−D′k ≤ (1−D′1)

k∏
i=2

si
ri

s′i
r′i

+ 2

k∑
i=2

1

Ani

i∏
j=2

sj
rj
.

From the definition ni := 4i and that of the constant B in (8), one concludes that for each k ≥ 1,

1−D′k ≤ (1−D′1)B + 2B

k∑
i=1

1

Ani
.

Now, the choice of An1
was made so that D′1 = 1, hence

1−D′k ≤ 2B
∑
i≥1

1

Ani
≤ 1

2
.

Thus, D′k ≥ 1/2 holds for all k ≥ 1, which provides finite paths satisfying the desired properties of length
as large as we want. The infinite path claimed to exist is obtained easily from this by means of a Cantor
diagonal type argument.

Finally, it remains to show (10). The proof follows the same principle of that of [8, Lemma 2.3]
but requires a little adjustment. First, we denote by D̂′′k the density of points in Q(nk) that are “well-
attainable” in the sense that they belong to the last of a sequence of consecutively intersecting paths
Q(n1,m

′′
1), P (n1,m

′
1), . . . , P (nk−1,m

′
k−1),Q(nk,m

′′
k) for which inequalities of type (6) or (7) hold according

to the case. We have

(1−D′k) ≤ (1− D̂′′k) +
1

Ank
. (11)

Indeed, the term 1/Ank corresponds to the density of horizontal paths in P (nk) that are “bad by themselves”

in the sense that the corresponding type (6) inequality does not hold for them. The term (1−D̂′′k) corresponds
to the density of paths in P (nk) that may be good by themselves but intersect Q(nk) at a set formed only
by non-well-attainable points. (Notice that we are using the fact that all horizontal paths in P (nk) have the
same number of points in Q(nk).) The left-side inequality in (10) then follows as a combination of (11) and
the inequality

1− D̂′′k ≤ (1−D′′k)
sk
rk
,

where the correction factor comes from the fact that although the number of points in each path of the form
Q(nk,m) is not constant, it varies between rk and sk.

Similarly, in the right-side inequality, the term 1/Ank+1
corresponds to the density of bad-by-themselves

paths of the form Q(nk+1,m) in Q(nk+1). The term (1 −D′k) corresponds to the “accumulated density of
bad paths” up to P (nk), and equals the density of “non-well-attainable” points in P (nk)∩Q(nk+1). Finally,
the correction factor comes from the fact that the number of points in P (nk) ∩ Q(nk+1) contained in each
path of the form Q(nk+1,m) lies between r′k+1 and s′k+1.

2.4 Proof of Theorem A: the general case

To deal with the general case we will follow a similar strategy, though most of the computations become
more involved. We will now consider paths inside parallelepipeds of dimension d−1 having sides of length of

(relative) order k, k2, . . . , kd−1. This will make naturally appear the exponent d(d−1)
2 in relation to the total

number of points in the parallelepiped. The most relevant difficulty will be related to the decomposition
into paths. Indeed, the construction of the preceding section illustrated by Figure 3 is no longer satisfactory,
and we will need to carry out a nontrivial modification of it. Since this is of independent interest and has
potential applications in other contexts, the discussion of the new construction will be the subject of §2.5.
Here we content ourselves in stating what we need for our purposes, which is summarized in the next

Lemma 2.5. Let M > N be positive integer numbers, with N of the form 1+2k. There exists a decomposition
of N0 := {0, 1, . . .} into N subsets (paths) satisfying:

(i) The distance (jump) between two consecutive points of each path is either M or 1;

(ii) For all 0 ≤ K1 < K2, the maximal number of points of a path contained in [[K1,K2]] differs from the
minimal one by at most 4 + 2M−1N−1 + 4 log2(N − 1).
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We now proceed to the proof of Theorem A. Recall that the graph of the N∗d−1-orbit of the interval I∗

defined by (3) has Zd−1 as its set of vertices. We will hence inductively define parallelepipeds Q(n)⊂Zd−1.
We start with Q(0) := [[1, 1 + 4d+1]]d−1. Assuming that Q(n) := [[x1,n, y1,n]] × · · · × [[xd−1,n, yd−1,n]]
has been already defined, we let i(n) ∈ {1, . . . , d − 1} be the residue class (mod. d − 1) of n, and we set
Q(n+ 1) := · · ·× [[1 + 4i(n)(xi(n),n−1), yi(n),n]]× [[xi(n)+1,n, 1 + 4i(n)+1(yi(n)+1,n−1)]]×· · · , where the dots
mean that the corresponding factors remain untouched. (See Figure 5 for an illustration of the case d = 4,
with n ≡ 1 (mod. 3).)

Notice that xi,n, yi,n are of the form 1+2k for all i, n. Although one may give precise formulas for xi,n, yi,n,
we will only need to record the (easy to check) fact that for some universal constants C1, C2, C3, C4, we have
the estimates

C14
in
d−1 ≤ yi,n − xi,n ≤ C24

in
d−1 (12)

and
C34

in
d−1 ≤ xi,n ≤ C44

in
d−1 . (13)

In particular, the number of points in Q(n) is

|Q(n)| =
d−1∏
j=1

(yj,n − xj,n) ≤
d−1∏
j=1

C24
jn
d−1 = Cd−12 4

n
d−1

∑d−1
j=1 j = Cd−12 4

nd
2 . (14)

Each Q(n) is decomposed into paths pointing in the i(n)th-direction as follows. If i(n) = 1, then we
decompose Q(n) into “horizontal” paths of jump 1 at each step, so that the number of paths is∏

j 6=1

(yj,n − xj,n) ≥
∏
j 6=1

C14
jn
d−1 = Cd−21 4

n
d−1

∑
j 6=1 j = Cd−21 4n

[
d
2−

1
d−1

]
.

If i(n) 6= 1, then for each fixed coordinates zj ∈ [[xj,n, yj,n]], with j 6= i(n), we identify

{z1} × · · · × {zi(n)−1} × [[xi(n),n, yi(n),n]]× {zi(n)+1} × · · · × {zd−1} ∼ [[xi(n),n, yi(n),n]] ⊂ N

and we decompose this set into N := xi(n)−1,n paths making jumps (in the i(n)th-direction) of either 1 or
M := zi(n)−1,n steps following the strategy of Lemma 2.5. The corresponding number of paths now equals

xi(n)−1,n

∏
j 6=i(n)

(yj,n − xj,n) ≥ C34
(i(n)−1)n
d−1

∏
j 6=i(n)

C14
jn
d−1 = C34

(i(n)−1)n
d−1 Cd−2

1 4
n
d−1

∑
j 6=i(n) j = C3C

d−2
1 4n

[
d
2
− 1
d−1

]
.

In either case, we denote by Q(n, 1), . . . , Q(n,mn) these paths, and we let C5 := min{C3C
d−2
1 , Cd−21 }, so

that mn ≥ C54n
[
d
2−

n
d−1

]
. What is important in the construction above is that each of these paths has a

concrete dynamical meaning for the action of N∗d−1 ⊂ Nd. Namely, if i(n) = 1, they are induced by the
action of the generator f2,1, whereas for i(n) 6= 1, they are induced by the action of fi(n),1 and fi(n)−1,i(n),
where the first generator appears for 1-step jumps and the second one for jumps of amplitude zi(n)−1,n.

Associated to each point (i1, . . . , id−1) ∈ Zd−1 there is a positive number `i1,...,id−1
, namely the length of

the interval
I∗i1,...,id−1

:=
⋃
j∈Z

Ii1,...,id−1,j .

Notice that the total sum of the `i1,...,id−1
’s equals 1. Moreover, all the intervals I∗i1,...,id−1

are in the N∗d−1-
orbit of I∗ = I∗0,...,0; see (3). Hence, as in the case d = 3, what we need to do is to ensure the existence of an
infinite sequence of intersecting paths in Q(1), Q(2), . . . along which the total Lα-sum is finite provided that
α > 2

d(d−1) . To do this, we start with the next

Lemma 2.6. Given 0 < α < 1, there exists a constant C6 > 0 such that for all A > 0 and all n ≥ 1, the
subset of indexes m ∈ {1, . . . ,mn} satisfying∑

(i1,...,id−1)∈Q(n,m)

`αi1,...,id−1
≤ AC6

4n
[
dα
2 −

1
d−1

] (15)

has density at least 1− 1/A.
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Proof. As in the case d = 3, by Hölder’s inequality we have∑
(i1,...,id−1)∈Q(n)

`αi1,...,id−1
≤ |Q(n)|1−α ≤ C(d−1)(1−α)

2 4
nd(1−α)

2 .

Hence,

1

mn

mn∑
m=1

∑
(i1,...,id−1)∈Q(n,m)

`αi1,...,id−1
≤ C

(d−1)(1−α)
2 4

nd(1−α)
2

C54
nd
2 −

n
d−1

=
C

(d−1)(1−α)
2

C54
ndα
2 −

n
d−1

,

and the claim of the lemma follows from Chebyshev’s inequality for C6 := C
(d−1)(1−α)
2 /C5. �
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Figure 5

Q(n)
Q(n + 1)

Q(n + 2)

Q(n + 3)

x1,n y1,n = y1,n+1x1,n+1

x2,n = x2,n+1

y2,n

y2,n+1 = y2,n+2

x2,n+2

x3,n

y3,n

From now on, we fix α > d(d−1)
2 . We start by letting rn (resp. sn) be the minimum (resp. maximum)

of points in a path of the form Q(n,m) inside Q(n) ∩ Q(n + 1). Similarly, we denote by r′n (resp. s′n) the
minimum (resp. maximum) number of points of a path of the form Q(n + 1,m) inside Q(n) ∩ Q(n + 1).
Then we let

B :=
∏
n≥1

sn
rn

s′n
r′n
.

We claim that the value of B is finite. Indeed, we have rn = sn whenever i(n) = 1, whereas s′n = r′n whenever
i(n) = d− 1. For the other values of i := i(n), the condition (ii) in Lemma 2.5 together with the inequalities

2
yi−1,n−1
xi−1,n−1 ≤ 4d+2 and 2

yi,n+1−1
xi,n+1−1 ≤ 4d+2 yield the estimates

yi,n+1 − xi,n+1

xi−1,n
− 4− 4d+2 − 4 log2(xi−1,n − 1) ≤ rn ≤ sn ≤

yi,n+1 − xi,n+1

xi−1,n
+ 4 + 4d+2 + 4 log2(xi−1,n − 1)

and

yi+1,n − xi+1,n

xi,n+1
− 4− 4d+2− 4 log2(xi,n+1− 1) ≤ r′n ≤ s′n ≤

yi+1,n − xi+1,n

xi,n+1
+ 4 + 4d+2 + 4 log2(xi,n+1− 1),

which together with (12) and (13) easily imply the finiteness of B.
We will also use the (finite) constant

C := 2
∑
n≥1

1

2n
[
dα
2 −

1
d−1

] .
11



Now we fix A1 ≥ BC 2
dα
2 −

1
d−1 such (15) holds for n = 1 and every m ∈ {1, . . . ,m1} when letting A = A1.

Finally, for n ≥ 2, we set

An := BC 2n
[
dα
2 −

1
d−1

]
.

Lemma 2.7. There exists an infinite sequence of paths of the form Q(n,m′n) in Q(n) such that, for all
n ≥ 1, the path Q(n+ 1,m′n+1) intersects Q(n,m′n) and (15) holds for m = m′n and A = An.

Proof. As in the case d = 3, for each n ≥ 1 we let Dn be the density of indexes m ∈ {1, . . . ,mn} such that
there exists a finite sequence of paths Q(1, n′1), . . . , Q(n,m′n) satisfying:

– For each 1 ≤ k ≤ n− 1, the path Q(k + 1,m′k+1) intersects Q(k,m′k);

– Estimate (15) holds for each m = m′k and A = Ak.

Similar arguments to those leading to (10) yield

(1−Dn+1) ≤ (1−Dn)
sn
rn

s′n
r′n

+
1

An
.

Indeed, the product
sns
′
n

rnr′n
acts as a correction factor for the passage from Q(n) to Q(n + 1) taking into

account that the paths of the form Q(n,m) do not have the same number of points in Q(n)∩Q(n+ 1), and
similarly for those of the form Q(n+ 1,m). By induction, the preceding inequality yields

1−Dn ≤ (1−D1)

n−1∏
k=1

sk
rk

s′k
r′k

+

n−1∑
k=1

1

Ak

k−1∏
j=1

sj
rj

s′j
r′j
≤ (1−D1)B +B

∑
k≥1

1

Ak
.

The choice of A1 was made so that D1 = 1, hence

1−Dn ≤ B
∑
k≥1

1

Ak
≤ 1

2
.

As a consequence, Dn ≥ 1/2, which implies that for each n we may obtain a finite sequence of n paths with
the desired properties. The infinite sequence is obtained via a Cantor diagonal type argument. �

The proof of Theorem A is now at hand. Indeed, the concatenation of the paths provided by the preceding
lemma yields an infinite sequence of points in Zd−1 along which the value of the Lα-sum is bounded from
above by ∑

n≥1

AnC6

4n
[
dα
2 −

1
d−1

] ≤ A1C6

4
dα
2 −

1
d−1

+
∑
n≥2

BCC6

2n
[
dα
2 −

1
d−1

] ≤ 2A1C6 + 2BC6.

This is in correspondence to a sequence of intervals of the form Ii1,...,id−1
each of which is obtained from

the preceding one by applying one of the generators in {f2,1, f3,1, . . . , fd,1} ∪ {f2,1, f3,2. . . . , fd,d−1}. Joining
this infinite sequence to a finite one from the origin to a point in Q(1, n′1), we obtain an infinite sequence of
intervals in the N∗d−1-orbit of the interval I∗ for which the Lα-sum is finite, and hence the arguments of §2.2
may be applied. This concludes the proof.

2.5 An independent combinatorial lemma

The aim of this Section is to give the proof of Lemma 2.5. We first give the details of the construction
of the partition of N0 into N sets (paths) P1, ...., PN , and latter we check the desired properties. The
construction is made in two steps, the former of which applies to arbitrary values of N , whereas the latter
is restricted to integers of the form 1 + 2k.

Step 1. Let M > N be positive integers. Assume that we are given a partition

[[0,M − 1]] = R0

⋃
R1

⋃
. . .
⋃
RN−1

into “consecutive” sets, that is, such that 1 + maxRi = minRi+1 holds for all 0 ≤ i ≤ N − 2. Then this
induces a partition of N0 as follows. Denoting R⊕ k := {n+ k : n ∈ R}, we define

12



• S1 :=
N−1⋃
j=1

Rj ⊕ j(M − 1),

• Si :=
N−1⋃
j=i−1

Rj ⊕ (j − i+ 1)(M − 1)
⋃ i−2⋃

j=1

Rj ⊕ (j − i+N)(M − 1), for 2 ≤ i ≤ N .

(Notice that, by definition, the second term in the definition of Si above is empty for i = 2.) Now, what
defines our partition of N0 is the “periodic repetition” of the sets S1, ..., SN . More precisely, we let

• P1 := R0

⋃ ∞⋃
k=0

S1 ⊕ kN(M − 1),

• Pi :=
∞⋃
k=0

Si ⊕ kN(M − 1), for 2 ≤ i ≤ N .

To have a clearer view of this construction, the reader may easily check that for the particular choice
R0 := {0}, R1 := {1}, . . . , RN−2 := {N − 2} and RN−1 := {N − 1, N,N + 1, . . . ,M − 1}, it yields to the
paths constructed in §2.3 (see again Figure 3 for an illustration).

It is sometimes better to think on our paths as concatenations of “patches”. In this view, for 2 ≤ i ≤ N ,
the sequence representing Si is Ri−1Ri . . . RN−1R1R2 . . . Ri−2, which in notation modulo N − 1 may be
rewritten as Ri−1Ri . . . Ri+N−2. This means that Si is made of a copy of Ri−1 followed by a copy of Ri
translated by M−1 units, a copy of Ri+1 translated by another M−1 units, and so on. Similarly, our paths
Pi may be seen as infinite sequences of patches. Thinking on each Si as a patch as well, for 2 ≤ i ≤ N , the
path Pi is represented by SiSiSi . . .. The sequence representing P1 corresponds to R0S1S1S1 . . ..

Step 2. Assuming that N has the form 1 + 2k, we will associate to it a particular choice of sets R1, ..., RN .
Let p ≥ 1 and q ≥ 0 be the integers such that

M − 1 = (N − 1)p+ q, with q < N − 1.

Let us consider the binary expansion of q:

q = 2r1 + . . .+ 2rl , with r1 > .... > rl ≥ 0.

(Notice that since q < N − 1 = 2k, we have k > r1.) Now, for 1 ≤ i ≤ N − 1, define si as being the largest
integer s such that 2k−rs divides i whenever there is such an index s, and as being equal to zero otherwise.
We claim that the following relation holds:

s1 + s2 + . . .+ sN−1 = q. (16)

Indeed, by definition, si equals s > 0 if and only if i is a multiple of 2k−rs but not a multiple of 2k−rs+1 .
Now, in {1, 2, . . . , N − 1}, there are exactly 2rs multiples of 2k−rs , namely the products of 2k−rs with the
integers in {1, 2, 3, . . . , 2rs}. Hence, the left-side expression in (16) equals

l∑
s=1

s
∣∣{i : si = s}

∣∣ =

l−1∑
s=1

s
(
2rs − 2rs+1

)
+ l2rl =

l∑
s=1

2rs = q. (17)

Finally, let us inductively define:

• R0 := {0},
• Ri := {1 + maxRi−1, ..., p+ si + maxRi−1}, where 1 ≤ i ≤ N − 1.

Notice that for 1 ≤ i ≤ N − 1, the number of points of Ri equals

p+ si ≤ p+ l ≤ p+ k = p+ log2(N − 1). (18)

Using (16), we conclude that the number of points contained in the union of the Ri’s equals

1 + p(N − 1) + s1 + . . .+ sN−1 = 1 + p(N − 1) + q = M.

Thus, the Ri’s yield a partition of [[0,M − 1]] into consecutive sets. We claim that the corresponding
partition of N0 into the paths P1, . . . , PN produced as in Step 1 satisfies the desired properties.

13



Step 3. We first notice that in order to prove property (ii) of Lemma 2.5, we may restrict ourselves to
intervals of the form [[0,K]] instead of general intervals [[K1,K2]] provided we obtain the better bound
2 + M−1

N−1 + 2 log2(N) for the maximal difference of points in [[0,K]] among our N paths. This is what we
now proceed to do.

Let a, b be non-negative integers such that

K = aN(M − 1) + b, with b < N(M − 1),

Let us first consider a path Pi such that 2 ≤ i ≤ N . In terms of patch sequences, and using notation modulo
N − 1, the intersection of Pi with [[0,K]] has the form

Si . . . SiRi−1Ri . . . Ri−1+tT, with t ≤ N − 1.

Here, the patch T is a starting part of the patch Ri+t. Moreover, the patch Si appears precisely a times.
By construction, the number of points in the set represented above is a times the number of points in

Si plus the sum of the number of points in Ri−1 . . . Ri−1+t plus the number of points in T . The former
equals a(M − 1), hence it is independent of i ∈ {2, . . . , N}, whereas the latter is smaller than or equal to
p+si+t ≤ p+log2(N −1); see (18). As a consequence, the difference with respect to the number of points in
[[0,K]]∩Pj (with 2 ≤ j ≤ N) is at most p+ log2(N − 1) plus the difference between the number of points in
Ri−1 . . . Ri−1+t and Rj−1 . . . Rj−1+t. Since p ≤ 1 + M−1

N−1 , our task reduces to show that the last difference
is at most log2(N − 1).

Now, the number of points in the first (resp. second) sequence above equals

(p+ si−1) + (p+ si) + . . .+ (p+ si−1+t) = tp+ si−1 + . . .+ si−1+t(
resp. (p+ sj−1) + (p+ sj) + . . .+ (p+ sj−1+t) = tp+ sj−1 + . . .+ sj−1+t

)
.

Define ρs,i (resp. ρs,j) as being the number of indexes in {i− 1, . . . , i− 1 + t} (resp. {j − 1, . . . , j − 1 + t})
that are multiples of 2k−rs . A similar argument to that leading to (17) yields

si−1 + . . .+ si−1+t = ρ1,i + ρ2,i + . . .+ ρl,i
(
resp. sj−1 + . . .+ sj−1+t = ρ1,j + ρ2,j + . . .+ ρl,j

)
.

Since
t

2k−rs
≤ ρs,i ≤ 1 +

t

2k−rs

(
resp.

t

2k−rs
≤ ρs,j ≤ 1 +

t

2k−rs

)
,

the value of |ρs,i − ρs,j | equals either zero or 1. We thus conclude that∣∣si−1 + . . .+ si−1+t − sj−1 − . . .− sj−1+t
∣∣ ≤ |ρ1,i − ρ1,j |+ . . .+ |ρl,i − ρl,j | ≤ l ≤ k = log2(N − 1),

as we wanted to show.
Actually, so far we have obtained the upper bound 1+ M−1

N−1 +2 log2(N−1) for the difference between the
number of points in Pi∩ [[0,K]] and Pj ∩ [[0,K]]. The extra 1 which lacks appears when making comparisons
with the path P1, taking into account that P1 starts with R0 = {0}. The proof of this follows the same ideas
above. We leave the details to the reader.

3 Construction of smoothings for α < 2
d(d−1)

3.1 A reminder on Denjoy-Pixton actions

For the constructions leading to the proofs of Theorems B and C, we will use Pixton’s technique [12].
The main technical tool will be the following lemma from [18].

Lemma 3.1. For a certain universal constant M there exists a family of diffeomorphisms ϕJ
′,J
I′,I : I → J

where I, I ′, J, J ′ are non-degenerate intervals and I ′ (resp. J ′) is contiguous by the left to I (resp. J),

satisfying ϕK
′,K

J′,J ◦ ϕ
J′,J
I′,I = ϕK

′,K
I′,I and∣∣ log
(
DϕJ

′,J
I′,I (u)

)
− log

(
DϕJ

′,J
I′,I (v)

)∣∣
|u− v|

≤ M

|I|

∣∣∣∣ |I||J ′||J ||I ′|
− 1

∣∣∣∣
for all u, v in I provided that max{|I|, |I ′|, |J |, |J ′|} ≤ 2 min{|I|, |I ′|, |J |, |J ′|}.
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The proof of this lemma proceeds as follows. Following [18], let ξ(x)( ∂
∂x ) be a C∞ vector field on [0, 1]

such that ξ(x) = x near 0, and ξ(x) = 0 on [1/2, 1]. Moreover, assume that for all x,

|Dξ(x)| ≤ 1.

Let ψt(x) be the solution of the differential equation

dψt
dt

(x) = ξ(ψt(x)), ψ0(x) = x.

Let us consider the diffeomorphism x 7→ b ψt(x/a) sending the interval [0, a] onto the interval [0, b]. For any

real numbers a′, a, b′, b such that a′ < 0 < a and b′ < 0 < b, let φb
′,b
a′,a be the diffeomorphism from [0, a] onto

[0, b] defined by

φb
′,b
a′,a(x) = bψlog(b′a/a′b)(x/a).

Its is easy to check that for all positive a, b, c and all negative a′, b′, c′, one has

φc
′,c
b′,b ◦ φ

b′,b
a′,a = φc

′,c
a′,a

Moreover, as is shown in [18],

logDφb
′,b
a′,a(x) = log

b

a
+ logDψlog(b′a/a′b)

(x
a

)
, (19)

∣∣logDψlog(b′a/a′b)

∣∣ ≤ ∣∣∣∣log
b′a

a′b

∣∣∣∣ =

∣∣∣∣log
b′

a′
− log

b

a

∣∣∣∣ . (20)

Furthermore, letting M > 0 be a constant such that |D2ξ(x)|≤M for all x, we have∣∣∣D logDφb
′,b
a′,a(x)

∣∣∣ ≤ M

a

∣∣∣∣b′aa′b − 1

∣∣∣∣ . (21)

Starting with the maps φb
′,b
a′,a, we construct the desired family {ϕJ

′,J
I′,I } as follows. Letting I = [w,w + a],

I ′ = [w + a′, w], J = [w′, w′ + b], and J ′ = [w′ + b′, w′], where a′ < 0 < a and b′ < 0 < b, we let

ϕJ
′,J
I′,I = φb

′,b
a′,a(x− w) + w′.

3.2 Sharp embeddings of Nd

In order to prove our Theorem B, we fix once and for all an arbitrary positive number α < 2
d(d−1) . Our

aim is to show that for a good choice of the lengths |Ii1,...,id |, the maps fj := fj+1,j , 1 ≤ j ≤ d−1, defined as
in §2.1 using the maps from §3.1 instead of affine maps are C1+α-diffeomorphisms of the corresponding (non
necessarily normalized) interval I. From now on, we will assume that d ≥ 3. Although the case d = 2 can be
ruled out by a slightly modified construction, it is also covered by the (much simpler) construction leading
to Theorem C. In all what follows, M will denote a universal constant whose explicit value is irrelevant for
our purposes.

We begin by choosing number pd∈]1, 5/4], and for 1 ≤ j ≤ d− 1 we choose pj > 0 so that the following
properties are satisfied:

(iB) p1 > p2 > . . . > pd−1 > pd > 1,

(iiB) 1
p1

+ 1
p2

+ . . .+ 1
pd−1

+ 1
pd
< 1,

(iiiB) α ≤ pd
(pd−1)p1 ,

(ivB) α ≤ pd
pd−1

(
1
pj
− 1

pj−1

)
for all 1 < j < d,

(vB) α ≤ 1
pd
− 1

pd−1
.
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A concrete choice is pj := 1
jα(1−1/pd) . (Hence, one may take pd := 5

4 and pj := 5
jα for 1 ≤ j ≤ d − 1.)

Indeed, the first property is easy to check. For the second one, we have

d∑
j=1

1

pj
=

1

pd
+

d−1∑
j=1

jα

(
1− 1

pd

)
=

1

pd
+ α

(
1− 1

pd

)
d(d− 1)

2
<

1

pd
+

(
1− 1

pd

)
= 1,

where the inequality comes from the hypothesis α < 2
d(d−1) . For the third and fourth properties, we actually

have equalities with our choice. Finally, since d ≥ 3,

α <
2

d(d− 1)
<

2

3
≤ 1/pd

2− 1/pd
≤ 1/pd

1 + (d− 1)(1− 1/pd)
.

Hence,

α

[
1 + (d− 1)

(
1− 1

pd

)]
≤ 1

pd
,

that is,

α ≤ 1

pd
− α(d− 1)

(
1− 1

pd

)
=

1

pd
− 1

pd−1
,

which shows (vB).

It is worth mentioning that for α ≥ 2
d(d−1) , the properties above are incompatible. Indeed, from (iiiB)

we get 1
p1
≥ α(pd−1)

pd
. Using (ivB) inductively, we obtain 1

pj
≥ jα(pd−1)

pd
for 1 ≤ j ≤ d− 1. This yields

d∑
j=1

1

pj
≥

d−1∑
j=1

jα(pd − 1)

pd
+

1

pd
=

α(pd − 1)d (d− 1)

2pd
+

1

pd
.

If α ≥ 2
d(d−1) , the right-side expression is greater than or equal to 1, contrary to (iiB).

Now fixing any choice of the pj ’s as above, we let

|Ii1,...,id | :=
1

|i1|p1 + . . .+ |id|pd + 1
.

According to [8, §3], property (iiB) implies that the sum of the lengths |Ii1,...,id | is finite. We next proceed
to show that the induced maps fj are C1+α-diffeomorphisms of the corresponding interval I.

3.3 The map f1 is a C1+α-diffeomorphim

I. First we consider x, y in the same interval Ii1,...,id . We have

| logDf1(x)− logDf1(y)|
|x− y|

≤ M

|Ii1,...,id |

∣∣∣∣ |Ii1,...,id ||Ii1+1,...,id |
|Ii1+1,...,id−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ .
Hence,

| logDf1(x)− logDf1(y)|
|x− y|α

≤ M

∣∣∣∣ |Ii1,...,id ||Ii1+1,...,id |
|Ii1+1,...,id−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ |Ii1,...,id |−α.
The right-side expression is bounded from above by

M

∣∣∣∣ (|i1|p1+ . . .+ |id − 1|pd+1)(|i1 + 1|p1+ . . .+ |id|pd+1)

(|i1 + 1|p1+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)
− 1

∣∣∣∣ (|i1|p1+ . . .+ |id|pd+1)α,

which equals

M

∣∣∣∣ (|id|pd−|id − 1|pd)(|i1|p1−|i1 + 1|p1)

(|i1 + 1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1|p1+|i2|p2+ . . .+ |id|pd+1)

∣∣∣∣(|i1|p1+ . . .+ |id|pd+1)α.
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By the Mean Value Theorem, this expression is bounded from above by

M
(|id|+1)pd−1(|i1|+1)p1−1

(|i1|p1+|i2|p2+ . . .+ |id|pd+1)2−α
. (22)

In the case |i1|p1≤ |id|pd , this is bounded by

M
(|id|+1)pd−1(|id|

pd
p1 +1)p1−1

(|id|pd+1)2−α
.

This expression is uniformly bounded when pd − 1 + pd
p1

(p1 − 1) ≤ pd(2 − α), that is, when α ≤ 1
p1

+ 1
pd

,

which is ensured by the condition (vB). In the case |id|pd≤ |i1|p1 , we have the upper bound

M
(|i1|

p1
pd +1)pd−1(|i1|+1)p1−1

(|i1|p1+1)2−α
.

This expression is uniformly bounded when p1 − 1 + p1
pd

(pd − 1) ≤ p1(2 − α), that is, when α ≤ 1
p1

+ 1
pd

,

which –as we have already seen– is ensured by the condition (vB).

II. Now we consider x, y so that x ∈ Ii1,...,id−1,id and y ∈ Ii1,...,id−1,i′d
for some id < i′d. To simplify, we will

just deal with positive id, i
′
d, the other cases being analogous.

If i′d = id + 1, then letting z be the right endpoint of the interval Ii1,...,id−1,id , we have

| logDf1(x)− logDf1(y)|
|x− y|α

≤ | logDf1(x)− logDf1(z)|
|x− z|α

+
| logDf1(z)− logDf1(y)|

|z − y|α
,

and both terms of the sum above are uniformly bounded by the previous case.

Assume henceforth that i′d− id ≥ 2. By property (20), the value of | logDf1(x)− logDf1(y)| is bounded
from above by∣∣∣∣∣log

|Ii1+1,...,id|
|Ii1,...,id |

−log
|Ii1+1,...,i′

d
|

|Ii1,...,i′d |

∣∣∣∣∣+

∣∣∣∣log
|Ii1+1,...,id|
|Ii1,...,id |

−log
|Ii1+1,...,id−1|
|Ii1,...,id−1|

∣∣∣∣+

∣∣∣∣∣log
|Ii1+1,...,i′

d
|

|Ii1,...,i′d |
−log

|Ii1+1,...,i′
d
−1|

|Ii1,...,i′d−1|

∣∣∣∣∣.
Since i 7→ |Ii1+1,...,id−1,i

|
|Ii1,...,id−1,i

| is a monotonous function, this expression is smaller than or equal to

3

∣∣∣∣∣log

(
|Ii1+1,...,i′d

|
|Ii1,...,i′d |

)
− log

(
|Ii1+1,...,id−1|
|Ii1,...,id−1|

)∣∣∣∣∣ =

=

∣∣∣∣log
(|i1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1 + 1|p1+|i2|p2+ . . .+ |i′d|pd+1)

(|i1 + 1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1|p1+|i2|p2+ . . .+ |i′d|pd+1)

∣∣∣∣ =

=

∣∣∣∣log

(
1 +

(i′pdd − (id − 1)pd)(|i1|p1−|i1 + 1|p1)

(|i1 + 1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1|p1+|i2|p2+ . . .+ |i′d|pd+1)

)∣∣∣∣ .
Since the expression in brackets in the right-side term equals

(|i1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1 + 1|p1+|i2|p2+ . . .+ |i′d|pd+1)

(|i1 + 1|p1+|i2|p2+ . . .+ |id − 1|pd+1)(|i1|p1+|i2|p2+ . . .+ |i′d|pd+1)
,

it is bounded from below by a positive number. Therefore,

∣∣ logDf1(x)− logDf1(y)
∣∣ ≤M ∣∣∣∣ (i′pdd − i

pd
d )(|i1|p1−|i1 + 1|p1)

(|i1 + 1|p1+|i2|p2+ . . .+ |id|pd+1)(|i1|p1+|i2|p2+ . . .+ |i′d|pd+1)

∣∣∣∣.
By The Mean Value Theorem, the last expression is bounded from above by

M
i′pd−1d (i′d − id)(|i1|+1)p1−1

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)
.
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Thus, in order to get an upper bound for
| log f ′1(x)−log f

′
1(y)|

|x−y|α , we need to estimate the expression

i′pd−1d (i′d − id)(|i1|+1)p1−1

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α
. (23)

We will split the general case into four ones:

(a) i′d ≤ 2id + 1,

(b) i′pdd ≤ |i1|p1+ . . .+ |id−1|pd−1 ,

(c) i′d ≥ 2id + 2 and ipdd ≥ |i1|p1+ . . .+ |id−1|pd−1 ,

(d) i′d ≥ 2id + 2 and ipdd ≤ |i1|p1+ . . .+ |id−1|pd−1≤ i′pdd .

In case (a), the estimate |x − y| ≥ (i′d − id − 1)|Ii1,i2,...,i′d | shows that the expression (23) is bounded
from above by

M
i′pd−1d (i′d − id)1−α(|i1|+1)p1−1

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)1−α
. (24)

By the condition i′d≤2id + 1, the latter expression is smaller than or equal to

M
ipd−αd (|i1|+1)p1−1

(|i1|p1+ipdd + 1)2−α
.

If |i1|p1≤ ipdd , then
i
pd−α
d (|i1|+1)p1−1

(|i1|p1+i
pd
d +1)2−α

≤ i
pd−α
d (i

pd
p1
d +1)p1−1

(i
pd
d +1)2−α

, and the last expression is uniformly bounded by

condition (iiiB). If ipdd ≤ |i1|p1 , then
i
pd−α
d (|i1|+1)p1−1

(|i1|p1+i
pd
d +1)2−α

≤ |i1|
p1
pd

(pd−α)
(|i1|+1)p1−1

(|i1|p1+1)2−α , and this is uniformly bounded

again by condition (iiiB).

In case (b), the expression (23) is still bounded from above by (24), which in its turn is smaller than or
equal to

M
i′pd−αd (|i1|+1)p1−1

(|i1|p1+ . . .+ |id−1|pd−1+1)2−α
.

Now using the condition i′pdd ≤ |i1|p1+ . . . + |id−1|pd−1 , we see that this last expression is bounded from
above by

M
(|i1|+1)p1−1

(|i1|p1+ . . .+ |id−1|pd−1+1)
1−α+ α

pd

≤ (|i1|+1)p1−1

(|i1|p1+1)
1−α+ α

pd

.

Finally, the right-side expression is uniformly bounded by condition (iiiB).

In case (c), we first need to estimate the value of |x− y|:

|x− y| ≥
∑

id<j<i′d

|Ii1,...,id−1,j | =
∑

id<j<i′d

1

|i1|p1+ . . .+ |id−1|pd−1+jpd + 1
≥

≥
∑

id<j<i′d

1

ipdd + jpd + 1
≥

∑
id<j<i′d

1

3jpd
≥
∫ i′d

id+1

1

3xpd
dx ≥

≥ M

(id + 1)pd−1

(
1−

(
id + 1

i′d

)pd−1)
≥

≥ M

(id + 1)pd−1

(
1−

(
1

2

)pd−1)
≥ M

(id + 1)pd−1
,

where in the second inequality we used the hypothesis ipdd ≥ |i1|p1+ . . . + |id−1|pd−1 . Using this, the value
of (23) is easily seen to be smaller than or equal to

M
i′pd−1d (i′d − id)(|i1|+1)p1−1(id + 1)(pd−1)α

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)
≤ M

(|i1|+1)p1−1(id + 1)(pd−1)α

|i1|p1+ . . .+ ipdd + 1
.
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Since by hypothesis we have ipdd ≥ |i1|p1 , the right-side expression above is bounded from above by

M
(i
pd
p1

d + 1)p1−1(id + 1)(pd−1)α

ipdd + 1
,

which is uniformly bounded by the condition (iiiB).

Let us finally consider the case (d). Letting

S := 1 + |i1|p1 + |i2|p2 + . . .+ |id−1|pd−1 ,

we first observe that

|x− y| ≥
∑

id<j<i′d

|Ii1,...,id−1,j | =
∑

id<j<i′d

1

S + jpd
≥
∫ i′d

id+1

dx

xpd + S
≥
∫ i′d

id+1

dx

(x+ S1/pd)pd
.

The last integral equals

1

(pd − 1)

[
1

(id+1+S1/pd)pd−1
− 1

(i′d+S1/pd)pd−1

]
=

1

(pd − 1)

[
(i′d + S1/pd)pd−1− (id + 1 + S1/pd)pd−1

(id+1+S1/pd)pd−1(i′d+S1/pd)pd−1

]
.

Using the Mean Value Theorem, we conclude that

|x− y| ≥ i′d − id − 1

(id + 1 + S1/pd)pd−1 (i′d + S1/pd)
.

Using this, we conclude that (23) is smaller than or equal to

i′pd−1d (i′d − id)(|i1|+1)p1−1(id + 1 + S1/pd)α(pd−1)(i′d + S1/pd)α

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)(i′d − id − 1)α
≤

≤ (|i1|+1)p1−1(id + 1 + S1/pd)α(pd−1)(i′d + S1/pd)α

(|i1|p1+ . . .+ ipdd + 1)(i′d − id − 1)α
. (25)

By hypothesis, 1 + ipdd ≤ S, thus id ≤ S1/pd . Since (by definition) |i1|p1 ≤ S, this yields

(|i1|+1)p1−1(id + 1 + S1/pd)α(pd−1)

(|i1|p1+ . . .+ ipdd + 1)
≤MS

p1−1
p1

+
α(pd−1)

pd
−1

. (26)

By hypothesis, we also have S ≤ 1 + i′pdd and i′d ≥ 2id + 2, which gives

(i′d + S1/pd)α

(i′d − id − 1)α
≤M. (27)

Putting together (26) and (27), and using again that S ≤ 1 + i′pdd , we conclude that the expression in (25)
is bounded from above by

MS
p1−1
p1

+
α(pd−1)

pd
−1

,

which is uniformly bounded by the condition (iiiB).

III. Finally, we consider x, y so that x ∈ Ii1,...,id−1,id and y ∈ Ii′1,...,i′d−1,i
′
d

for (i1, . . . , id−1) ≺ (i′1, . . . , i
′
d−1),

where ≺ stands for the lexicographic ordering. Letting z (resp. z′) be the right endpoint (resp. left endpoint)
of
⋃
j∈Z Ii1,...,id−1,j (resp.

⋃
j∈Z Ii′1,...,i′d−1,j

), by construction we have Df1(z) = Df1(z′) = 1. Hence

| logDf1(x)− logDf1(y)|
|x− y|α

≤ | logDf1(x)− logDf1(z)|
|x− z|α

+
| logDf1(z′)− logDf1(y)|

|z′ − y|α
,

and both terms of the sum above are uniformly bounded by the previous case.

To conclude the proof of the regularity of f1, notice that slightly modified arguments apply to the inverse
f−11 , thus showing that f1 is a C1+α-diffeomorphism.
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3.4 For 2 ≤ j ≤ d− 1, the map fj is a C1+α-diffeomorphism

I. We first consider x, y in the same interval Ii1,...,id . We have

| logDfj(x)− logDfj(y)|
|x− y|

≤ M

|Ii1,...,id |

∣∣∣∣ |Ii1,...,id |
|Ii1,...,ij+ij−1,...,id |

|Ii1,...,ij+ij−1,...,id−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ .
Hence,

| logDfj(x)− logDfj(y)|
|x− y|α

≤ M

∣∣∣∣ |Ii1,...,id |
|Ii1,...,ij+ij−1,...,id |

|Ii1,...,ij+ij−1,...,id−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ |Ii1,...,id |−α.
One readily checks that the right-side expression equals

M

∣∣∣∣ (|id|pd−|id − 1|pd)(|ij |pj−|ij + ij−1|pj )
(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |ij |pj+ . . .+ |id|pd+1)1−α

∣∣∣∣ .
By The Mean Value Theorem, and since pj−1>pj , the last expression is bounded from above by

M
(|id|+1)pd−1(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ |id|pd+1)2−α
. (28)

To estimate this expression, let us first assume that |ij |pj≤ |ij−1|pj−1 . In this case, (28) is bounded from
above by

M
(|id|+1)pd−1(|ij−1|

pj−1
pj +|ij−1|)pj−1|ij−1|

(|ij−1|pj−1+|id|pd+1)2−α
. (29)

If |id|pd≤ |ij−1|pj−1 , then this expression is smaller than or equal to

M
(|ij−1|

pj−1
pd +1)pd−1(|ij−1|

pj−1
pj +|ij−1|)pj−1|ij−1|

(|ij−1|pj−1+1)2−α
.

Since pj−1/pj ≥ 1, this is uniformly bounded if

pj−1
pd

(pd − 1) +
pj−1
pj

(pj − 1) + 1− pj−1(2− α) ≤ 0,

that is, α ≤ 1
pd

+ 1
pj
− 1

pj−1
, and this is ensured by conditions (iB) and (vB). If |ij−1|pj−1≤ |id|pd , then the

expression (29) is smaller than or equal to

M
(|id|+1)pd−1(|id|

pd
pj +|id|

pd
pj−1 )pj−1|id|

pd
pj−1

(|id|pd+1)2−α
.

Since pd/pj−1 ≤ pd/pj , this is uniformly bounded if

pd − 1 +
pd
pj

(pj − 1) +
pd
pj−1

− pd(2− α) ≤ 0,

which is again ensured by conditions (iB) and (vB).
Assume now that |ij−1|pj−1≤ |ij |pj . In this case, (28) is bounded from above by

M
(|id|+1)pd−1(|ij |+|ij |

pj
pj−1 )pj−1|ij |

pj
pj−1

(|ij |pj+|id|pd+1)2−α
.

Proceeding as in the previous case, one readily checks that this expression is uniformly bounded when
α ≤ 1

pd
+ 1

pj
− 1

pj−1
, which is ensured by conditions (iB) and (vB).

II. Now we consider the case where x∈ Ii1,i2,...,id and y∈ Ii1,i2,...,i′d for different id, i
′
d. As in the case of

f1, we may restrict ourselves to the case where i′d− id ≥ 2, with id, i
′
d both positive.
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Once again, property (20) implies that | logDfj(x)− logDfj(y)| is smaller than or equal to the sum∣∣∣∣∣log
|Ii1,...,ij+ij−1,...,id |
|Ii1,...,ij ,...,id |

− log
|Ii1,...,ij+ij−1,...,i′d

|
|Ii1,...,ij ,...,i′d |

∣∣∣∣∣+
+

∣∣∣∣log
|Ii1,...,ij+ij−1,...,id |
|Ii1,...,ij ,...,id |

− log
|Ii1,...,ij+ij−1,...,id−1|
|Ii1,...,ij ,...,id−1|

∣∣∣∣+
+

∣∣∣∣∣log
|Ii1,...,ij+ij−1,...,i′d−1|
|Ii1,...,ij ,...,i′d−1|

− log
|Ii1,...,ij+ij−1,...,i′d

|
|Ii1,...,ij ,...,i′d |

∣∣∣∣∣ .
As in previous estimates of similar expressions, we have

| logDfj(x)− logDfj(y)| ≤ 3

∣∣∣∣∣log

( |Ii1,...,ij+ij−1,...,id−1|
|Ii1,...,ij ,...,id−1|

)
− log

(
|Ii1,...,ij+ij−1,...,i′d

|
|Ii1,...,ij ,...,i′d |

)∣∣∣∣∣ .
The last expression equals

3

∣∣∣∣log
(|i1|p1+ . . .+ |ij |pj+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |i′d|pd+1)

(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |ij |pj+ . . .+ |i′d|pd+1)

∣∣∣∣ ,
that is,

3

∣∣∣∣log

(
1 +

(|id − 1|pd − i
′pd
d )(|ij + ij−1|pj−|ij |pj )

(|i1|p1+ . . . + |ij + ij−1|pj+ . . . + |id − 1|pd+1)(|i1|p1+ . . . + |ij |pj+ . . . + |i′d|pd+1)

)∣∣∣∣ . (30)

The expression into brackets in the right-side term equals

(|i1|p1+ . . .+ |ij |pj+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |i′d|pd+1)

(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |ij |pj+ . . .+ |i′d|pd+1)
,

hence it is uniformly bounded from below by a positive number. Therefore, the value of (30) is smaller than
or equal to

M

∣∣∣∣ (ipdd − i
′pd
d )(|ij + ij−1|pj−|ij |pj )

(|i1|p1+ . . .+ |ij + ij−1|pj+ . . .+ |id|pd+1)(|i1|p1+ . . .+ |ij |pj+ . . .+ |i′d|pd+1)

∣∣∣∣ .
Using the Mean Value Theorem and the condition pj−1>pj , this last expression is easily seen to be bounded
from above by

M
i′pd−1d (i′d − id)(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |ij |pj+ . . .+ i′pdd + 1)
.

Therefore,
| logDfj(x)−logDfj(y)|

|x−y|α is smaller than or equal to

M
i′pd−1d (i′d − id)(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |ij |pj+ . . .+ i′pdd + 1)|x− y|α
. (31)

In order to estimate this expression, we will again consider separately the cases (a), (b), (c) and (d) of the
previous section.

The case (a) is i′d ≤ 2id+1. Here the estimate |x−y|≥ (i′d− id−1)|Ii1,i2,...,i′d | shows that (31) is bounded
from above by

M
i′pd−1d (i′d − id)1−α(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |ij |pj+ . . .+ i′pdd + 1)1−α
, (32)

which is smaller than or equal to

M
ipd−αd (|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)2−α
. (33)
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There are three subcases:

– If |ij |pj≤ |ij−1|pj−1 and ipdd ≤ |ij−1|pj−1 , then

M
ipd−αd (|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)2−α
≤M |ij−1|

pj−1
pd

(pd−α)(|ij−1|
pj−1
pj +|ij−1|)pj−1|ij−1|

(|ij−1|pj−1+1)2−α
.

The last expression is easily seen to be uniformly bounded by condition (ivB).

– If |ij |pj≤ ipdd and |ij−1|pj−1≤ ipdd , then

M
ipd−αd (|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)2−α
≤M

ipd−αd (i
pd
pj

d + i
pd
pj−1

d )pj−1i
pd
pj−1

d

(ipdd + 1)2−α
,

and the last expression is uniformly bounded by condition (ivB).

– If |ij−1|pj−1≤ |ij |pj and ipdd ≤ |ij |pj , then one has

M
ipd−αd (|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)2−α
≤M |ij |

pj
pd

(pd−α)(|ij |+|ij |
pj
pj−1 )pj−1|ij |

pj
pj−1

(|ij |pj+1)2−α
,

and the last expression is uniformly bounded by condition (ivB).

In case (b), we still have the upper bound (32) for (31). Now, using the condition

i′pdd ≤ |i1|p1+ . . .+ |id−1|pd−1 ,

the value of (32) is easily seen to be bounded from above by

M
i′pd−αd (|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |id−1|pd−1+1)2−α
≤ M

(|ij |+|ij−1|)pj−1|ij−1|
(|i1|p1+ . . .+ |id−1|pd−1+1)

1−α+ α
pd

.

To estimate the right-side expression of this inequality, we consider two subcases:

– If |ij−1|pj−1≤ |ij |pj , then

M
(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |id−1|pd−1+1)
1−α+ α

pd

≤M (|ij |+|ij |
pj
pj−1 )pj−1|ij |

pj
pj−1

(|ij |pj+1)
1−α+ α

pd

,

and the last expression is easily seen to be uniformly bounded by condition (ivB).

– If |ij |pj≤ |ij−1|pj−1 , then

M
(|ij |+|ij−1|)pj−1|ij−1|

(|i1|p1+ . . .+ |id−1|pd−1+1)
1−α+ α

pd

≤M (|ij−1|
pj−1
pj +|ij−1|)pj−1|ij−1|

(|ij−1|pj−1+1)
1−α+ α

pd

,

and the last expression is easily seen to be uniformly bounded by condition (ivB).

In case (c), we had the estimate

|x− y| ≥ M

(id + 1)pd−1
, (34)

which shows that (31) is bounded from above by

M
i′pd−1d (i′d − id)(|ij |+|ij−1|)pj−1|ij−1|(id + 1)(pd−1)α

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |ij |pj+ . . .+ i′pdd + 1)
.

This is smaller than or equal to

M
(|ij |+|ij−1|)pj−1|ij−1|(id + 1)(pd−1)α

|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1
. (35)
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Now from the condition ipdd ≥ |i1|p1+ . . .+ |id−1|pd−1 it follows that |ij |pj≤ ipdd and |ij−1|pj−1≤ ipdd .
Therefore, (35) is bounded from above by

M
(i
pd/pj
d + i

pd/pj−1

d )pj−1i
pd/pj−1

d (id + 1)(pd−1)α

ipdd + 1
,

and this expression is easily seen to be uniformly bounded by condition (ivB).

In case (d), we had the estimate

|x− y| ≥ i′d − id − 1

(id + 1 + S1/pd)pd−1 (i′d + S1/pd)
, (36)

where S := 1 + |i1|p1 + |i2|p2 . . . |id−1|pd−1 . Thus, (31) is bounded from above by

M
i′pd−1d (i′d − id)(|ij |+|ij−1|)pj−1|ij−1|(id + 1 + S1/pd)α(pd−1)(i′d + S1/pd)α

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |ij |pj+ . . .+ i′pdd + 1)(i′d − id − 1)α
,

hence by

M
(|ij |+|ij−1|)pj−1|ij−1|(id + 1 + S1/pd)α(pd−1)(i′d + S1/pd)α

(|i1|p1+ . . .+ |ij |pj+ . . .+ ipdd + 1)(i′d − id − 1)α
.

Since the condition 1 + ipdd ≤ S yields id ≤ S1/pd , this expression is smaller than or equal to

M
(|ij |+|ij−1|)pj−1|ij−1|(i′d + S1/pd)α

(i′d − id − 1)α
S

α(pd−1)
pd

−1

.

The conditions 1 + ipdd ≤ S and pj−1 ≥ pj also yield |ij | ≤ S1/pj and |ij−1| ≤ S1/pj−1 ≤ S1/pj , thus
showing that the last expression is smaller than or equal to

M
(i′d + S1/pd)α

(i′d − id − 1)α
S

pj−1

pj
+ 1
pj−1

+
α(pd−1)

pd
−1

.

Using the conditions i′d ≥ 2id + 2 and S ≤ 1 + i′pdd , this last expression is easily seen to be bounded from
above by

MS
pj−1

pj
+ 1
pj−1

+
α(pd−1)

pd
−1
,

which is uniformly bounded by the condition (ivB).

III. Finally, in the case where x ∈ Ii1,...,id and y ∈ Ii′1,...,i′d for different (i1, . . . , id−1) and (i′1, . . . , i
′
d−1), one

may apply the same argument as that of f1.

3.5 The map fd is a C1+α-diffeomorphism

I. First we consider x, y in the same interval Ii1,...,id . We have

| logDfd(x)− logDfd(y)|
|x− y|

≤ M

|Ii1,...,id |

∣∣∣∣ |Ii1,...,id |
|Ii1,...,id+id−1

|
|Ii1,...,id+id−1−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ ,
hence

| logDfd(x)− logDfd(y)|
|x− y|α

≤ M

∣∣∣∣ |Ii1,...,id |
|Ii1,...,id+id−1

|
|Ii1,...,id+id−1−1|
|Ii1,...,id−1|

− 1

∣∣∣∣ |Ii1,...,id |−α.
The right-side term above is smaller than or equal to

M

∣∣∣∣ (|i1|p1+ . . .+ |id − 1|pd+1)(|i1|p1+ . . .+ |id + id−1|pd+1)

(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)
− 1

∣∣∣∣ (|i1|p1+ . . .+ |id|pd+1)α,

which equals

M

∣∣∣∣∣
∑d−1
k=1|ik|pk(|id + id−1|pd−|id|pd)+

∑d−1
k=1|ik|pk(|id − 1|pd−|id + id−1 − 1|pd) + C

(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)

∣∣∣∣∣(S + |id|pd
)α
,
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where

C := |id − 1|pd |id + id−1|pd−|id + id−1 − 1|pd |id|pd+|id − 1|pd−|id + id−1 − 1|pd+|id + id−1|pd−|id|pd

and, as before, S := 1 + |i1|p1 + |i2|p2 . . . |id−1|pd−1 . By the Mean Value Theorem, the last expression is
bounded from above by

M

∑d−1
k=1|ik|pk(|id|+|id−1|)pd−1|id−1|+

∑d−1
k=1|ik|pk(|id|+|id−1|+1)pd−1|id−1|+C ′

(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)1−α
,

where

C ′ := |id + id−1|pd(|id|+1)pd−1 + |id|pd(|id|+|id−1|+1)pd−1+

+ (|id|+|id−1|+1)pd−1|id−1|+(|id|+|id−1|)pd−1|id−1|.

To get an upper bound for this last expression, it is enough to do so for

|id + id−1|pd(|id|+1)pd−1

(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)1−α
(37)

and
|ik|pk(|id|+|id−1|)pd−1|id−1|

(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)(|i1|p1+ . . .+ |id|pd+1)1−α
, (38)

where 1 ≤ k ≤ n.
Expression (37) may be written as

|id + id−1|pd
(|i1|p1+ . . .+ |id + id−1 − 1|pd+1)

(|id|+1)pd−1

(|i1|p1+ . . .+ |id|pd+1)1−α
.

The first factor is uniformly bounded, whereas the second is smaller than or equal to

(|id|+1)pd−1

(|id|pd+1)1−α
.

This last expression is uniformly bounded provided that pd − 1 − pd(1 − α) ≤ 0, which is a consequence
of condition (vB).

Concerning expression (38), notice that since pd−1>pd, it is smaller than or equal to

|ik|pk(|id|+|id−1|)pd−1|id−1|
(|i1|p1+ . . .+ |id|pd+1)2−α

≤ (|id|+|id−1|)pd−1|id−1|
(|i1|p1+ . . .+ |id|pd+1)1−α

.

On the one hand, if |id|pd≤ |id−1|pd−1 , then

(|id|+|id−1|)pd−1|id−1|
(|i1|p1+ . . .+ |id|pd+1)1−α

≤ (|id−1|
pd−1
pd +|id−1|)pd−1|id−1|

(|id−1|pd−1+1)1−α
,

and the last term is uniformly bounded when pd−1

pd
(pd− 1) + 1 ≤ pd−1(1−α), which is ensured by condition

(vB). On the other hand, if |id−1|pd−1≤ |id|pd , then

(|id|+|id−1|)pd−1|id−1|
(|i1|p1+ . . .+ |id|pd+1)1−α

≤ (|id|+|id|
pd
pd−1 )pd−1|id|

pd
pd−1

(|id|pd+1)1−α
,

which is uniformly bounded when pd − 1 + pd
pd−1

≤ pd(1− α), that is, when condition (vB) holds.

II. Next we consider the case where x ∈ Ii1,i2,...,id and y ∈ Ii1,i2,...,i′d , with i′d − id ≥ 2. (For the case where

i′d = id + 1, we apply a similar argument to that of the previous maps.) Once again, we will only deal with
positive id, i

′
d. As in previous cases, | logDfd(x)− logDfd(y)| is bounded from above by

3

∣∣∣∣∣log
|Ii1,...,id+id−1−1|
|Ii1,...,id−1|

|Ii1,...,i′d |
|Ii1,...,i′d+id−1

|

∣∣∣∣∣ ≤M

∣∣∣∣log
(|i1|p1+ . . . + i

pd
d + 1)(|i1|p1+ . . . + |i′d + id−1|pd+1)

(|i1|p1+ . . . + |id + id−1|pd+1)(|i1|p1+ . . . + i
′pd
d + 1)

∣∣∣∣.
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Note that the right-side term may be rewritten as

M

∣∣∣∣∣log

(
1 +

∑d−1
k=1|ik|pk(|i′d + id−1|pd−i′pdd ) +

∑d−1
k=1|ik|pk(ipdd − |id + id−1|pd) + C̄

(|i1|p1+ . . .+ |id + id−1|pd+1)(|i1|p1+ . . .+ i′pdd + 1)

)∣∣∣∣∣ , (39)

where

C̄ := ipdd |i
′
d + id−1|pd−|id + id−1|pdi′pdd + ipdd − i

′pd
d + |i′d + id−1|pd−|id + id−1|pd

= ipdd
[
|i′d + id−1|pd−i′pdd

]
+i′pdd

[
ipdd −|id + id−1|pd

]
+
[
ipdd −|id + id−1|pd

]
+
[
|i′d + id−1|pd−i′pdd

]
.

Since the expression
(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ |i′d + id−1|pd+1)

(|i1|p1+ . . .+ |id + id−1|pd+1)(|i1|p1+ . . .+ i′pdd + 1)

is uniformly bounded from below by a positive number, (39) is bounded from above by

M

∣∣∣∣∣
∑d−1
k=1|ik|pk(|i′d + id−1|pd−i′pdd ) +

∑d−1
k=1|ik|pk(ipdd − |id + id−1|pd) + C̄

(|i1|p1+ . . .+ |id + id−1|pd+1)(|i1|p1+ . . .+ i′pdd + 1)

∣∣∣∣∣ .
By The Mean Value Theorem, and since pd−1>pd, this last expression is smaller than or equal to

M

∑d−1
k=1|ik|pk(i′d + |id−1|)pd−1|id−1|+

∑d−1
k=1|ik|pk(id + |id−1|)pd−1|id−1|+C̄ ′

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)
,

where C̄ ′ equals

ipdd (i′d + |id−1|)pd−1|id−1|+i′pdd (id + |id−1|)pd−1|id−1|+(id + |id−1|)pd−1|id−1|+(i′d + |id−1|)pd−1|id−1|.

Therefore, in order to get an upper bound for the value of | logDfd(x)−logDfd(y)|
|x−y|α , we only need to do so

with
|ik|pk(i′d + |id−1|)pd−1|id−1|

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α
, where 1 ≤ k ≤ n, (40)

and
i′pdd (id + |id−1|)pd−1|id−1|

(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α
. (41)

Expression (40) is easy to deal with. Indeed, since

|x− y| ≥ (i′d − id − 1)|Ii1,i2,...,i′d | =

(
i′d − id − 1

|i1|p1+ . . .+ i′pdd + 1

)
, (42)

we have

|ik|pk(i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α

≤

≤ |ik|pk(i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)1−α

≤

≤ (i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ i′pdd + 1)1−α

.

To estimate the right-side expression, we consider two cases. If, on the one hand, we have i′pdd ≤ |id−1|pd−1 ,
then

(i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ i′pdd + 1)1−α

≤ (|id−1|
pd−1
pd +|id−1|)pd−1|id−1|

(|id−1|pd−1+1)1−α
.
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This is uniformly bounded when pd−1

pd
(pd − 1) + 1 ≤ pd−1(1− α), which is equivalent to condition (vB). On

the other hand, if |id−1|pd−1≤ i′pdd , then

(i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ i′pdd + 1)1−α

≤ (i′d + (i′d)
pd
pd−1 )pd−1(i′d)

pd
pd−1

(i′pdd + 1)1−α
,

and the right-side term is uniformly bounded provided that condition (vB) holds.
To obtain an upper bound for (41), we will consider separately the cases (a), (b), (c) and (d) of the

previous two sections.
In case (a) we have id ≤ i′d ≤ 2id + 1. Hence, the upper bound already obtained for (40) with k= d is

an upper bound for (41).
In case (b), we have i′pdd ≤ |i1|p1+ . . .+ |id−1|pd−1 . Hence, (41) is smaller than or equal to

d−1∑
k=1

|ik|pk(i′d + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α

,

and we have already seen that each term of this sum is uniformly bounded.

In case (c), we use (34) to obtain

i′pdd (id + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ ipdd + 1)(|i1|p1+ . . .+ i′pdd + 1)|x− y|α

≤M (id + |id−1|)pd−1|id−1|
(|i1|p1+ . . .+ ipdd + 1)1−α

(id + 1)(pd−1)α

(|i1|p1+ . . .+ ipdd + 1)α
.

In the right-side expression, the second factor (id+1)(pd−1)α

(i
pd
d +1)α

is uniformly bounded. To show that the same

holds with the first factor, one may proceed as at the end of the estimates for (40) just changing i′d by id.

Finally, in case (d), the estimate (36) shows that (41) is smaller than or equal to

(id + |id−1|)pd−1|id−1|(id + 1 + S1/pd)α(pd−1) (i′d + S1/pd)α

(|i1|p1+ . . .+ ipdd + 1)(i′d − id − 1)α
.

Since the condition 1 + ipdd ≤ S yields id ≤ S1/pd , this expression is smaller than or equal to

M
(id + |id−1|)pd−1|id−1|(i′d + S1/pd)α

(i′d − id − 1)α
S

α(pd−1)
pd

−1

.

Moreover, by the definition of S, we have |id−1| ≤ S1/pd−1 ≤ S1/pd , which shows that the last expression is
smaller than or equal to

M
(i′d + S1/pd)α

(i′d − id − 1)α
S

pd−1
pd

+ 1
pd−1

+
α(pd−1)

pd
−1

.

Because of the conditions i′d ≥ 2id + 2 and S ≤ 1 + i′pdd , this last expression is bounded from above by

MS
pd−1

pd
+ 1
pd−1

+
α(pd−1)

pd
−1
,

which is uniformly bounded by the condition (vB).

III. Finally, in the case where x ∈ Ii1,...,id and y ∈ Ii′1,...,i′d for different (i1, . . . , id−1) and (i′1, . . . , i
′
d−1), one

may apply the same argument of the previous maps.

4 On a family of metabelian subgroups of Diff1+α
+ ([0, 1])

For each couple of integers (i, j), let Ii,j be an interval of length |Ii,j | so that the sum
∑
i,j |Ii,j | is finite.

Joining these intervals lexicographically, we obtain a closed interval I. Following [4, §2.3], we will deal with a
particular family of nilpotent groups Nd acting on I. Each Nd has nilpotence degree d+1 and is metabelian.
Moreover, N1 coincides with the Heisenberg group N2.
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The group Nd has a presentation〈
f, g0, g1, . . . , gd : [gi, gj ] = id, [f, g0] = id, [f, gi] = gi−1 for all i ≥ 1

〉
.

As maps, the generators send each interval Ii,j into a certain Ii′,j′ and coincide with the diffeomorphism

ϕ
Ii′,j′ ,Ii′,j′−1

Ii,j ,Ii,j−1
therein. The map f sends Ii,j into Ii+1,j . The maps g0 and g1 send Ii,j into Ii,j+1 or Ii,j+i,

respectively. To describe the dynamics of g2, . . . , gd, for each 0 < k ≤ d and each i ∈ Z, we let

rk(i) =
i(i+ 1)(i+ 2) . . . (i+ k − 1)

k!
,

and we define r0(i) = 1 for all i. (Note that |rk(i)| ≤ |i|k for k > 0.) Then the element gk sends the interval
Ii,j into Ii,j+rk(i).

Now fix a positive number α < 1. To carry out the preceding construction so that the resulting maps
are C1+α-diffeomorphisms of I, we need to make a careful choice of the lengths |Ii,j |. We let q > 1 be such
that the following conditions are satisfied:

(iC) 1 < q < 2,

(iiC) α < 2− q,
(iiiC) α < q

2q−1 ,

(ivC) α < 1
q .

Note that since α < 1 and the preceding right-side expressions go to 1 or to infinity as q tends to 1 from
above, we may choose q very near to 1 in such a way that these conditions are fulfilled.

Now let p := 2q−1
q−1 . Clearly, we may also impose the following supplementary conditions:

(vC) p > dq,

(viC) α ≤ 1
q −

d
p ,

(viiC) α < 1
q−1 −

dq
2q−1 .

We then define

|Ii,j | :=
1

|i|p + |j|q + 1
.

Since 1/p + 1/q < 1, it follows from [8, §3] that the sum
∑
i,j |Ii,j | is finite. We claim that the group Nd

obtained by using the maps from §3.1 is formed by C1+α-diffeomorphisms of I.

4.1 The map f is a C1+α-diffeomorphism

For simplicity, we only deal with points in the intervals Ii,j with i ≥ 0 and j ≥ 0 (the other cases are
analogous).

First we consider x, y in the same interval Ii,j . We have

| logDf(x)− logDf(y)|
|x− y|

≤ M

|Ii,j |

∣∣∣∣ |Ii,j ||Ii+1,j |
|Ii+1,j−1|
|Ii,j−1|

− 1

∣∣∣∣ .
Hence,

| logDf(x)− logDf(y)|
|x− y|α

≤ M

|Ii,j |

∣∣∣∣ |Ii,j ||Ii+1,j |
|Ii+1,j−1|
|Ii,j−1|

− 1

∣∣∣∣ |Ii,j |1−α = M

∣∣∣∣ |Ii,j ||Ii+1,j |
|Ii+1,j−1|
|Ii,j−1|

− 1

∣∣∣∣ |Ii,j |−α.
This yields

| logDf(x)− logDf(y)|
|x− y|α

≤M
∣∣∣∣ (i+ 1)p + jq + 1

ip + jq + 1

ip + (j − 1)q + 1

(i+ 1)p + (j − 1)q + 1
− 1

∣∣∣∣ (ip + jq + 1)α.

Therefore, the value of | logDf(x)−logDf(y)||x−y|α is bounded from above by

M

∣∣∣∣ ((i+ 1)p + jq + 1)(ip + (j − 1)q + 1)− (ip + jq + 1)((i+ 1)p + (j − 1)q + 1)

(ip + jq + 1)1−α((i+ 1)p + (j − 1)q + 1)

∣∣∣∣ ,
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which equals

M

(
(i+ 1)p − ip

)(
jq − (j − 1)q

)
(ip + jq + 1)1−α((i+ 1)p + (j − 1)q + 1)

.

By the Mean Value Theorem, this expression is bounded from above by

M
ip−1jq−1

(ip + jq + 1)1−α((i+ 1)p + (j − 1)q + 1)
.

Thus
| logDf(x)− logDf(y)|

|x− y|α
≤ M

ip−1

(i+ 1)p
jq−1

jq(1−α)
.

Now notice that the last expression is uniformly bounded when q − 1 ≤ q(1 − α), which is satisfied by
condition (ivC).

Next we consider x ∈ Ii,j and y ∈ Ii,j′ , with j < j′. The definition of f and property (19) yield

logDf(x) = logDφa
′,a
b′,b (x− w) = log

b

a
+ logDψlog(b′a/a′b)

(
x− w
a

)
,

where Ii,j = [w,w + a], Ii,j−1 = [w + a′, w], Ii+1,j = [w′, w′ + b], and Ii+1,j−1 = [w′ + b′, w′]. Analogously,

logDf(y) = logDφc
′,c
d′,d(y − u) = log

d

c
+ logDψlog(d′c/c′d)

(
y − u
c

)
,

where Ii,j′ = [u, u + c], Ii,j′−1 = [u + c′, u], Ii+1,j′ = [u′, u′ + d], and Ii+1,j′−1 = [u′ + d′, u′]. By property
(20),

∣∣ logDf(x)− logDf(y)
∣∣ ≤ ∣∣∣∣log

b

a
− log

d

c

∣∣∣∣+

∣∣∣∣logDψlog(b′a/a′b)

(
x− w
a

)∣∣∣∣+

∣∣∣∣logDψlog(d′c/c′d)

(
y − u
c

)∣∣∣∣
≤

∣∣∣∣log
b

a
− log

d

c

∣∣∣∣+

∣∣∣∣log
b′

a′
− log

b

a

∣∣∣∣+

∣∣∣∣log
d′

c′
− log

d

c

∣∣∣∣ .
Note that the last expression corresponds to∣∣∣∣log

(
|Ii+1,j |
|Ii,j |

)
− log

(
|Ii+1,j′ |
|Ii,j′ |

)∣∣∣∣+∣∣∣∣log

(
|Ii+1,j−1|
|Ii,j−1|

)
− log

(
|Ii+1,j |
|Ii,j |

)∣∣∣∣+∣∣∣∣log

(
|Ii+1,j′−1|
|Ii,j′−1|

)
− log

(
|Ii+1,j′ |
|Ii,j′ |

)∣∣∣∣ .
Since the function j 7→ |Ii+1,j |

|Ii,j | is non-decreasing, the preceding inequality yields

∣∣ logDf(x)− logDf(y)
∣∣ ≤ 3

∣∣∣∣log

(
|Ii+1,j′ |
|Ii,j′ |

)
− log

(
|Ii+1,j−1|
|Ii,j−1|

)∣∣∣∣
= 3

∣∣∣∣log
|Ii+1,j′ |
|Ii,j′ |

|Ii,j−1|
|Ii+1,j−1|

∣∣∣∣
= 3

∣∣∣∣∣log

(
ip + j′q + 1

)(
(i+ 1)p + j′q + 1

) ((i+ 1)p + (j − 1)q + 1
)(

ip + (j − 1)q + 1
) ∣∣∣∣∣ .

Hence, the value of
∣∣ logDf(x)− logDf(y)

∣∣ is bounded from above by

M

∣∣∣∣log

(
1 +

(ip + j′q + 1)((i+ 1)p + (j − 1)q + 1)− ((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)

((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)

)∣∣∣∣ . (43)

Since ip+j′q+1
(i+1)p+j′q+1

(i+1)p+(j−1)q+1
ip+(j−1)q+1 is uniformly bounded from below, namely

ip + j′q + 1

(i+ 1)p + j′q + 1

(i+ 1)p + (j − 1)q + 1

ip + (j − 1)q + 1
≥ ip + j′q + 1

2pip + j′q + 1
≥ ip + j′q + 1

2pip + 2pj′q + 2p
=

1

2p
,
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the expression in (43) is bounded from above by

M

∣∣∣∣ (ip + j′q + 1)((i+ 1)p + (j − 1)q + 1)− ((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)

((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)

∣∣∣∣,
which equals

M

∣∣∣∣ (j′q − (j − 1)q)((i+ 1)p − ip)
((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)

∣∣∣∣.
By the Mean Value Theorem, this expression is bounded from above by

M
ip−1j′q−1(j′ − j + 1)

((i+ 1)p + j′q + 1)(ip + (j − 1)q + 1)
.

Therefore, ∣∣ logDf(x)− logDf(y)
∣∣ ≤M ip−1j′q−1(j′ − j)

(ip + j′q)(ip + jq)
. (44)

We will split the general case into the following four cases:

(a) j′ ≤ 2j + 1,

(b) j′q ≤ ip,
(c) j′ > 2j + 1 , j′q > ip , jq ≥ ip,
(d) j′ > 2j + 1 , j′q > ip , jq < ip.

In cases (a) and (b), notice that from

|x− y| ≥ (j′ − j − 1)Ii,j′

it follows that

|x− y|α ≥
(
j′ − j − 1

ip + j′q + 1

)α
.

Hence by (44),
| logDf(x)− logDf(y)|

|x− y|α
≤ M

ip−1j′q−1(j′ − j)(ip + j′q + 1)α

(ip + j′q)(ip + jq)(j′ − j − 1)α
,

that is,
| logDf(x)− logDf(y)|

|x− y|α
≤ M

ip−1j′q−1(j′ − j)1−α

(ip + j′q)1−α(ip + jq)
. (45)

In case (a), we have j′ ≤ 2j + 1, and hence the right-side of (45) is bounded from above by

M
ip−1jq−1j1−α

(ip + jq)1−α(ip + jq)
= M

ip−1jq−α

(ip + jq)2−α
.

On the one hand, if i ≤ j
1
p−1 , then this expression is bounded by jq−α+1

jq(2−α) = j(α−1)(q−1). Since α < 1, the

expression is uniformly bounded. On the other hand, if j ≤ ip−1, then we have the upper bound

ip−1+(p−1)(q−α)

ip(2−α)
= iα−1−p−q+pq,

and this expression is uniformly bounded by the condition (iiC).
In case (b), we have j′q ≤ ip, and hence the right-side expression in (45) is bounded from above by

ip−1i
p
q (q−1)i

p
q (1−α)

ip+p(1−α)
= iα(p−

p
q )−1,

which is uniformly bounded by condition (iiiC).
In case (c), we have

|x− y| ≥
∑

j<n<j′

Ii,n =
∑

j<n<j′

1

ip + nq + 1
≥

∑
j<n<j′

1

jq + nq + 1
≥

∑
j<n<j′

1

3nq
≥
∫ j′

j+1

dx

3xq
,
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and hence

|x− y| ≥M 1

(j + 1)q−1

(
1−

(j + 1

j′
)q−1) ≥ 1

(j + 1)q−1

(
1−

(1

2

)q−1)
.

Therefore,

|x− y|α ≥M 1

(j + 1)(q−1)α
, (46)

and this yields

| logDf(x)− logDf(y)|
|x− y|α

≤M ip−1j′q−1(j′ − j)j(q−1)α

(ip + j′q)(ip + jq)
= M

(j′q−1(j′ − j)
ip + j′q

)( ip−1j(q−1)α
ip + jq

)
.

In the last expression, the first factor is uniformly bounded, while the second one is bounded by

M
j
q
p (p−1)j(q−1)α

jq
.

This last expression is uniformly bounded when q
p (p− 1) + (q − 1)α ≤ q, which is ensured by the condition

(iiiC).
The last case (d) is

j′ > 2j + 1 , j′q > ip , jq < ip.

For the distance between x and y we now have the estimate

|x− y| ≥
∑

j<n<j′

Ii,n =
∑

j<n<j′

1

ip + nq + 1
≥
∫ j′

j+1

1

ip + xq + 1
dx ≥

∫ j′

j+1

1

(i
p
q + x+ 1)q

dx.

The last integral is essentially

M
(i
p
q + j′ + 1)q−1 − (i

p
q + j + 2)q−1

(i
p
q + j + 2)q−1(i

p
q + j′ + 1)q−1

,

and by the Mean Value Theorem, this is larger than

M
j′ − j − 1

(i
p
q + j′ + 1)2−q(i

p
q + j + 2)q−1(i

p
q + j′ + 1)q−1

.

Therefore,

|x− y|α ≥ M
(j′ − j − 1)α

(i
p
q + j′ + 1)α(i

p
q + j + 2)(q−1)α

. (47)

This yields

| logDf(x)− logDf(y)|
|x− y|α

≤ M
ip−1j′q−1(j′ − j)(i

p
q + j′ + 1)α(i

p
q + j + 2)(q−1)α

(ip + j′q)(ip + jq)(j′ − j − 1)α

≤ M
ip−1(i

p
q + j′ + 1)α(i

p
q + j + 2)(q−1)α

(ip + jq)(j′ − j − 1)α

≤ M
ip−1(2j′ + 1)α(2i

p
q + 2)(q−1)α

(ip + jq)( j
′

2 )α

≤ M
ip−1(i

p
q + 1)(q−1)α

(ip + jq)
,

and by condition (iiiC) the last expression is uniformly bounded.
This completes the proof of the C1+α regularity of f . Similar arguments apply to its inverse f−1, thus

showing that f is a C1+α-diffeomorphism of I.

30



4.2 Each map gk is a C1+α-diffeomorphism

Again, we will only consider the case of positive i, j. First, we take x, y in the same interval Ii,j . We
have

| logDgk(x)− logDgk(y)|
|x− y|

≤ M

|Ii,j |

∣∣∣∣ |Ii,j |
|Ii,j+rk(i)|

|Ii,j+rk(i)−1|
|Ii,j−1|

− 1

∣∣∣∣ .
Hence

| logDgk(x)− logDgk(y)|
|x− y|α

≤ M

|Ii,j |

∣∣∣∣ |Ii,j |
|Ii,j+rk(i)|

|Ii,j+rk(i)−1|
|Ii,j−1|

− 1

∣∣∣∣ |Ii,j |1−α
= M

∣∣∣∣ |Ii,j |
|Ii,j+rk(i)|

|Ii,j+rk(i)−1|
|Ii,j−1|

− 1

∣∣∣∣ |Ii,j |−α
≤ M

∣∣∣∣ ip + (j + rk(i))q + 1

ip + jq + 1

ip + (j − 1)q + 1

ip + (j + rk(i)− 1)q + 1
− 1

∣∣∣∣ (ip + jq + 1)α.

The last expression may be rewritten as

M

∣∣∣∣ (ip + (j + rk(i))q + 1)(ip + (j − 1)q + 1)− (ip + jq + 1)(ip + (j + rk(i)− 1)q + 1)

(ip + jq + 1)1−α(ip + (j + rk(i)− 1)q + 1)

∣∣∣∣ .
By the Mean Value Theorem, the value of this expression is bounded from above by

M
ipjq−1 + ip(j + rk(i))q−1 + jq−1 + (j + rk(i))q−1 + (j + rk(i))qjq−1 + (j + rk(i))q−1jq

(ip + jq)1−α(ip + (j + rk(i)− 1)q)
,

and hence by

M
ip(j + rk(i))q−1 + (j + rk(i))qjq−1 + (j + rk(i))q−1jq

(ip + jq)2−α
≤M ip(j + ik)q−1 + (j + ik)qjq−1 + (j + ik)q−1jq

(ip + jq)2−α
.

We claim that the preceding right-expression is uniformly bounded. Indeed, if ip ≤ jq, then it is smaller
than or equal to

M
jq(j + j

qk
p )q−1 + (j + j

qk
p )qjq−1 + (j + j

qk
p )q−1jq

jq(2−α)
,

which is uniformly bounded by the conditions (ivC) and (vC). If jq ≤ ip, then it is smaller than or equal to

M
ip(i

p
q + ik)q−1 + (i

p
q + ik)qi

p
q (q−1) + (i

p
q + ik)q−1ip

ip(2−α)
,

which is again uniformly bounded by the conditions (ivC) and (vC).
Next we consider the case where x ∈ Ii,j and y ∈ Ii,j′ , with j ≤ j′. In this case, | log Dgk(x)−log Dgk(y)|

is smaller than or equal to∣∣∣∣log
|Ii,j+rk(i)|
|Ii,j |

− log
|Ii,j′+rk(i)|
|Ii,j′ |

∣∣∣∣+ ∣∣∣∣log
|Ii,j+rk(i)−1|
|Ii,j−1|

− log
|Ii,j+rk(i)|
|Ii,j |

∣∣∣∣+ ∣∣∣∣log
|Ii,j′+rk(i)−1|
|Ii,j′−1|

− log
|Ii,j′+rk(i)|
|Ii,j′ |

∣∣∣∣ .
The estimates for the last two terms are similar to those above, and we leave the computations to the reader.
The first term equals∣∣∣∣log

|Ii,j |
|Ii,j+rk(i)|

|Ii,j′+rk(i)|
|Ii,j′ |

∣∣∣∣ =

∣∣∣∣log
ip + j′q + 1

ip + (j′ + rk(i))q + 1

ip + (j + rk(i))q + 1

ip + jq + 1

∣∣∣∣ ,
that is, ∣∣∣∣log

(
1 +

(ip + j′q + 1)(ip + (j + rk(i))q + 1)− (ip + (j′ + rk(i))q + 1)(ip + jq + 1)

(ip + (j′ + rk(i))q + 1)(ip + jq + 1)

)∣∣∣∣ .
We claim that the expression ip+j′q+1

ip+(j′+rk(i))q+1
ip+(j+rk(i))

q+1
ip+jq+1 is bounded from below by a positive number.

Indeed, the first factor is uniformly bounded because:
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– if j′q ≤ ip, then ip+j′q+1
ip+(j′+rk(i))q+1 ≥

ip+j′q+1
ip+(j′+rk(i))q+1 ≥

ip+1

ip+(i
p
q +ik)q+1

, and the last expression is uniformly

bounded from below by a positive number;

– if ip ≤ j′q, then ip+j′q+1
ip+(j′+rk(i))q+1 ≥

ip+j′q+1
ip+(j′+ik)q+1

≥ j′q+1

j′q+(j′+j
′ qk
p )q+1

, which is uniformly bounded from below

by a positive number.

The second factor is uniformly bounded as well because:

– if ip ≤ jq, then 0 ≤ j − j
qk
p ≤ j + rk(i), thus ip+(j+rk(i))

q+1
ip+jq+1 ≥ ip+(j−j

qk
p )q+1

ip+jq+1 ≥ (j−j
qk
p )q+1

2jq+1 , which is
uniformly bounded from below by a positive number;

– if jq ≤ ip, then ip+(j+rk(i))
q+1

ip+jq+1 ≥ ip+1
2ip+1 , which is uniformly bounded from below by a positive number.

From the preceding, we deduce the estimate∣∣∣∣log
|Ii,j+rk(i)|
|Ii,j |

− log
|Ii,j′+rk(i)|
|Ii,j′ |

∣∣∣∣ ≤M

∣∣∣∣ (ip + j′q + 1)(ip + (j + rk(i))q + 1)− (ip + (j′ + rk(i))q + 1)(ip + jq + 1)

(ip + (j′ + rk(i))q + 1)(ip + jq + 1)

∣∣∣∣ .
Using the Mean Value Theorem and the inequalities j < j′ and rk(i) ≤ ik, the right-side term above is easily
seen to be smaller than or equal to

M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
. (48)

To get an upper bound for this expression, we separately consider the cases (a), (b), (c), and (d), from the
previous section.

The first case (a) is j′ ≤ 2j + 1. We have |x− y| ≥ j′−j−1
ip+j′q+1 , and hence

| logDgk(x)− logDgk(y)|
|x− y|α

≤ M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)

(ip + j′q + 1)α

(j′ − j − 1)α
+M

≤ M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)1−α(ip + jq)
+M

≤ M
ip+k(j + ik)q−1 + 2jq(j + ik)q−1ik

(ip + j′q)1−α(ip + jq)
+M.

We will deal with the expressions ip+k(j+ik)q−1

(ip+j′q)1−α(ip+jq) and jq(j+ik)q−1ik

(ip+j′q)1−α(ip+jq) separately. For the first we have

ip+k(j + ik)q−1

(ip + j′q)1−α(ip + jq)
≤ ip+k(j + ik)q−1

(ip + jq)2−α
.

Now notice that

– if ip ≤ jq, then ip+k(j+ik)q−1

(ip+jq)2−α ≤ j
q
p
(p+k)

(j+j
qk
p )q−1

jq(2−α) , and this is bounded when q
p (p + k) + q − 1 ≤ q(2 − α),

that is, when α ≤ 1
q −

k
p , which is our condition (viC);

– if jq ≤ ip, then ip+k(j+ik)q−1

(ip+jq)2−α ≤ ip+k(i
p
q +ik)q−1

ip(2−α) , and this is bounded when p+ k+ p
q (q − 1) ≤ p(2− α), that

is, when α ≤ 1
q −

k
p .

For the second expression we have

jq(j + ik)q−1ik

(ip + j′q)1−α(ip + jq)
≤ jq(j + ik)q−1ik

(ip + jq)2−α
.

Again, notice that

– if ip ≤ jq, then jq(j+ik)q−1ik

(ip+jq)2−α ≤ jq(j+j
qk
p )q−1j

qk
p

jq(2−α) , and as before, this is bounded when α ≤ 1
q −

k
p ;

– if jq ≤ ip, then jq(j+ik)q−1ik

(ip+jq)2−α ≤ ip(i
p
q +ik)q−1ik

ip(2−α) , and as before, this is bounded when α ≤ 1
q −

k
p .
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The second case (b) is j′q ≤ ip. The inequality |x− y| ≥ j′−j−1
ip+j′q+1 yields

| logDgk(x)− logDgk(y)|
|x− y|α

≤ M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)

(ip + j′q + 1)α

(j′ − j − 1)α
+M

≤ M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + jq)2−α
+M

≤ M
ip+k(i

p
q + ik)q−1 + jq(i

p
q + ik)q−1ik + ip(j + ik)q−1ik

(ip + jq)2−α
+M.

To estimate the last expression, we will bound the following three expressions:

ip+k(i
p
q + ik)q−1

(ip + jq)2−α
,

jq(i
p
q + ik)q−1ik

(ip + jq)2−α
, and

ip(j + ik)q−1ik

(ip + jq)2−α
.

For the first we have
ip+k(i

p
q + ik)q−1

(ip + jq)2−α
≤ ip+k(i

p
q + ik)q−1

ip(2−α)
,

and the right-side member is bounded provided that p+ k + p
q (q − 1) ≤ p(2− α), that is, α ≤ 1

q −
k
p , which

is our condition (viC). For the second expression, notice that

– if ip ≤ jq, then jq(i
p
q +ik)q−1ik

(ip+jq)2−α ≤ jq(j+j
qk
p )q−1j

qk
p

jq(2−α) , and this is bounded when q+ qk
p + q− 1 ≤ q(2−α), that

is, α ≤ 1
q −

k
p ;

– if jq ≤ ip, then jq(i
p
q +ik)q−1ik

(ip+jq)2−α ≤ ip(i
p
q +ik)q−1ik

ip(2−α) , and the last term is bounded because α ≤ 1
q −

k
p .

For the third expression, we have that

– if ip ≤ jq, then ip(j+ik)q−1ik

(ip+jq)2−α ≤ jq(j+j
qk
p )q−1j

qk
p

jq(2−α) , which is bounded when α ≤ 1
q −

k
p ;

– if jq ≤ ip, then ip(j+ik)q−1ik

(ip+jq)2−α ≤ ip(i
p
q +ik)q−1ik

ip(2−α) , which is also bounded when α ≤ 1
q −

k
p .

The third case (c) is j′ > 2j + 1 , j′q > ip , jq ≥ ip. Using (46) we obtain

| log Dgk(x)− log Dgk(y)|
|x− y|α

≤M ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
j(q−1)α +M.

To estimate the preceding right-side expression, we deal separately with

ip+k(j′ + ik)q−1

(ip + j′q)(ip + jq)
j(q−1)α,

jq(j′ + ik)q−1ik

(ip + j′q)(ip + jq)
j(q−1)α, and

j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
j(q−1)α.

For the first of these expressions one has

ip+k(j′ + ik)q−1

(ip + j′q)(ip + jq)
j(q−1)α ≤ ik(j′ + ik)q−1j′(q−1)α

ip + j′q
≤ j′

qk
p (j′ + j′

qk
p )q−1j′(q−1)α

j′q
,

and the right-side term is bounded by condition (viiC). For the second expression one has

jq(j′ + ik)q−1ik

(ip + j′q)(ip + jq)
j(q−1)α ≤ (j′ + ik)q−1ikj′(q−1)α

ip + j′q
≤ (j′ + j′

qk
p )q−1j′

qk
p j′(q−1)α

j′q
,

and the right-side term is uniformly bounded by the condition (viiC). Finally, for the third expression one
has

j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
j(q−1)α ≤ (j + ik)q−1ikj(q−1)α

ip + jq
≤ (j + j

qk
p )q−1j

qk
p j(q−1)α

jq
,

and the right-side term is also bounded by condition (viiC).
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The last case (d) is j′ > 2j + 1 , j′q > ip , jq < ip. Inequality (47) shows that | log Dgk(x)−log Dgk(y)|
|x−y|α is

smaller than or equal to

M
ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)

(i
p
q + j′ + 1)α(i

p
q + j + 2)(q−1)α

(j′ − j − 1)α
+M.

In this expression, the term (i
p
q +j′+1)α

(j′−j−1)α is bounded by (2j′+1)α

( j
′
2 )α

, and hence it is uniformly bounded. Therefore,

| log Dgk(x)− log Dgk(y)|
|x− y|α

≤M ip+k(j′ + ik)q−1 + jq(j′ + ik)q−1ik + j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α.

To estimate the right-side expression, we will deal separately with

ip+k(j′ + ik)q−1

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α,

jq(j′ + ik)q−1ik

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α, and

j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α.

For the first of these expressions one has

ip+k(j′ + ik)q−1

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α ≤ ik(j′ + ik)q−1

(ip + j′q)
(i
p
q + j)(q−1)α ≤ j′

qk
p (j′ + j′

qk
p )q−1

j′q
(j′ + j′)(q−1)α,

and, as before, we know that the right-side term is uniformly bounded by the condition (viiC). For the
second expression one has

jq(j′ + ik)q−1ik

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α ≤ (j′ + ik)q−1ik

(ip + j′q)
(i
p
q + j)(q−1)α ≤ (j′ + j′

qk
p )q−1j′

qk
p

j′q
(j′ + j′)(q−1)α,

and the right-side term is uniformly bounded by the condition (viiC). Finally, for the third expression one
has

j′q(j + ik)q−1ik

(ip + j′q)(ip + jq)
(i
p
q + j)(q−1)α ≤ (j + ik)q−1ik

(ip + jq)
(i
p
q + j)(q−1)α ≤ (i

p
q + ik)q−1ik

ip
(i
p
q + i

p
q )(q−1)α.

Here the right-side term is bounded when p
q (q−1)+k+ p

q (q−1)α ≤ p, which is true by the condition (viiC).
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