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Abstract. We study local and global well-posedness for the initial value problem asso-
ciated to the one-dimensional Schrödinger–Boussinesq equations in low regularity spaces.
To establish these results we make use of sharp L

p − L
q estimates.

1. Introduction

In this paper we consider the initial value problem (IVP) associated to the system of
nonlinear partial differential equations called the Schrödinger-Boussinesq equations, that
is,

(1.1)















i∂tu + ∂2
xu = uv + α|u|2u, x ∈ R, t > 0,

∂2
t v − ∂2

xv + ∂4
xv = ∂2

x(β|v|
p−1v + |u|2),

u(x, 0) = u0(x),
v(x, 0) = v0(x), vt(x, 0) = v1(x),

where the function u is a complex valued and v is a real valued function, p > 1 and α and
β are real parameters.

The system above appears in the study of interaction of solitons in optics (see [15],
[16]). Both, the nonlinear Schrödinger equation (see, for example, [4], [6], [7], [19] and for
a complete set of references [3]) and Boussinesq equation ([2], [5], [12], [13], [14], [17]) have
been extensively studied but the system above have been treated more under dissipative
effects and the presence of attractors ([1]).

Our purpose here is to establish local and global well-posedness results for the IVP
(1.1) in the spaces L2(R) and H1(R). Before giving our results we will begin by setting
up the initial data in our problem.
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We first observe that the system (1.1) can be written as

(1.2)











i∂tu + ∂2
xu = uv + α|u|2u, x ∈ R, t > 0,

∂tv = ∂xn,

∂tn = ∂x(v − ∂2
xv + β|v|p−1v + |u|2),

with initial data u(x, 0) = u0, n(x, 0) = n0, v(x, 0) = v0, respectively. Solutions of IVP
(1.2) satisfy the following conservation laws (see [1] and references therein)

K(t) =

∫

|u(x, t)|2 dx = K(0),

E(t) =
1

2

∫

(|u|2 + |∂xu|
2 + |∂xv|

2) dx +
1

2

∫

|(−∆)−1/2∂tv|
2 dx

+

∫

v|u|2dx +
β

p + 1

∫

|v|p+1 dx +
α

2

∫

|u|4 dx = E(0).

(1.3)

To make sense of the second expression above it is needed for the initial datum n0 being
a derivative of a L2 function. So we will require in IVP (1.1) v1(x) = h′(x), that is, the
derivative of some function in a suitable space.

To obtain results in low regularity spaces we will use the so called Lp − Lq estimates.
These type of estimates were first established by Strichartz ([18]) for solutions of the linear
Schrödinger equation, i.e,

(1.4)

{

∂tu = i∆u, x ∈ R
n, t ∈ R,

u(x, 0) = u0(x).

He showed that solutions of (1.4) satisfy
(

∫

R

∫

Rn

|eit∆u0(x)|2(n+2)/ndxdt
)n/2(n+2)

≤ c‖u0‖2.

Generalizations of this result have been obtained for several authors. (See, for instance,
[6], [11]).

We proceed as follows. Instead of working with the system of nonlinear partial differ-
ential equations in (1.1) we use its equivalent integral form, that is,

u(t) = U(t)u0 − i

∫ t

0

U(t − s) (uv + α|u|2u)(s)ds,

v(t) = V1(t)v0 + V2(t)v1 +

∫ t

0

V2(t − s) ∂2
x(β|v|

p−1v + |u|2)(s) ds,

(1.5)

where U(t) is the unitary group associated to the linear Schrödinger equation and V1(t)
and V2(t) are the linear operators associated to the linear Boussinesq equation to be
defined in Section 3.

Then we use the Lp −Lq estimates to show via the contraction mapping principle that
there exists a time T > 0 where (1.5) has a unique solution.
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The linear estimates we obtain for the Boussinesq equation allows us to obtain what
we believe are the best possible results concerning local and global well-posedness. The
intuition behind our affirmation is based on the recent results obtained by Kenig, Ponce
and Vega in [10]. They studied ill-posedness for the initial value problem associated to
the cubic Schrödinger equation, that is,

(1.6)

{

∂tu = i∂2
xu + |u|2u, x ∈ R, t ∈ R,

u(x, 0) = u0(x).

An scaling argument suggests that the best possible local well-posedness result in Sobolev
spaces should be for that data in Hs(R), s ≥ −1/2. On the other hand, Tsutsumi [19]
established the local theory for initial data in L2(R). These two results leave a gap in
[−1/2, 0). It was shown in [10] that the IVP (1.6) is in fact ill-posed for data in Hs(R),
s < 0. Also, there is a closed relation between the Boussinesq equation and the nonlinear
Schrödinger equation as the results in [13] shown. So we do not expect to have a better
regularity result than that in L2(R) × L2(R) for the system (1.1) given in Theorem 2.1
below.

We also have to notice that in the L2 case the power p = 5 is critical. Thus we have to
analyze this problem in a different way.

The plan of the paper is as follows. In the next section we will give the statements
of the main results and some remarks. We will recall the linear estimates associated to
the Schrödinger as well as Boussinesq linear equations in Section 3. In Section 4, the L2

theory will be given. The results regarding the critical case in L2 will be treated in section
5. The H1 theory will be established in Section 6 and finally, in Section 7 we will deal
with the global results.

2. Main Results

In this section we present the statement of the main results in this paper.

Theorem 2.1. Given u0, v0 ∈ L2(R) and v1 = h′ ∈ H−1(R), for 1 < p < 5 there exist
T = T (p, |α|, |β|, ‖u0‖2, ‖v0‖2, ‖v1‖H−1) > 0 and a unique solution (u, v) of the IVP (1.1)
satisfying

u, v ∈ C([−T, T ]; L2(R)) ∩ L4([−T, T ]; L∞(R)).

Moreover, for each (ũ0, ṽ0, ṽ1) ∈ L2 ×L2 ×H−1 there exists a neighborhood W of L2(R)×
L2(R) × H−1(R) such that the map

(u0, v0, v1) → (u(t), v(t)),

corresponding to the solution of the problem (1.1) with initial conditions (u0, v0, v1), is
Lipschitz.

Remark 2.2. The same proof of this theorem shows that solutions u of 1.1 also satisfy

(2.1) u ∈ C([−T, T ]; L2(R)) ∩ Lq([−T, T ]; Lp(R)),

where (p, q) is an admissible pair (see (3.2) below).
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Remark 2.3. The solutions found in Theorem 2.1 also satisfy the smoothing effect of
Kato type (see [8], [11]). More precisely, if u and v are solutions of (1.1) then

D1/2
x u, D1/2

x v ∈ L∞(R : L2[0, T ]).

See Proposition 4.2 below.

Theorem 2.4. Given u0, v0 ∈ L2(R) and v1 = h′ ∈ H−1(R), there exists T > 0, T =
T (|α|, |β|, ‖u0‖2, v0, v1), such that the problem (1.1) with p = 5 has a unique solution such
that

u, v ∈ C([−T, T ]; L2(R)) ∩ L4([−T, T ]; L∞(R)).

Moreover, there exists a neighborhood W of (ũ0, ṽ0, ṽ1) in L2 × L2 × H−1 such that the
map

(u0, v0, v1) → (u(t), v(t)),

corresponding to the solution of the problem (1.1) with initial conditions (u0, v0, v1), is
Lipschitz.

Theorem 2.5. Given u0, v0 ∈ H1(R), v1 = h′ ∈ L2(R), there exist

T = T (p, |α|, |β|, ‖u0‖H1, ‖v0‖H1, ‖v1‖L2) > 0

and a unique solution (u, v) of IVP (1.1) such that

u, v ∈ C([−T, T ]; H1(R)).

Moreover, the map (u0, v0, v1) → (u(t), v(t)) corresponding to the solution of the problem
is locally Lipschitz.

Remark 2.6. The solutions in Theorem 2.5 also satisfy the following smoothing effects.

• Lp − Lq estimates:

u ∈ C([−T, T ]; H1(R)) ∩ Lq
1([−T, T ]; Lp(R)),

v ∈ C([−T, T ]; H1(R)) ∩ L4
1([−T, T ]; L∞(R)),

where (p, q) is an admissible pair (see (3.2) below) and Lq
1([−T, T ]; Lp(R)) denotes

the space whose functions and their first derivatives belong to Lq([−T, T ]; Lp(R)).
• Kato’s smoothing effect:

D3/2
x u, D3/2

x v ∈ L∞(R : L2[0, T ]).

See Proposition 6.2 below.

Theorem 2.7. Let u0, v0 ∈ H1(R), v1 = h′ ∈ L2(R). The IVP (1.1) is globally well-posed
in H1(R) × H1(R)

a) For β > 0 and any data.
b) For β < 0 and data sufficiently small.
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Remark 2.8. In the case β < 0 we expect that solutions provided for large data blow-up in
finite time. The reason to conjecture this is the fact that solutions of the Boussinesq equa-
tion blow-up in finite time, for p > 1, meanwhile the one-dimensional cubic Schrödinger
equation is well behaved (see [14], [17]).

3. Linear Estimates

In this section we will recall a series of estimates obtained for solutions of the lin-
ear problem associated to the Schrödinger equation as well as for the Boussinesq linear
equation.

First we consider the (IVP) associated to the linear Schrödinger equation, that is,

(3.1)

{

∂tu = i∂2
xu, x ∈ R, t > 0,

u(x, 0) = u0(x),

whose solution is given by

u(t, x) = eit∆u0(x) = (e−itξ2

û0(ξ))
∨(x).

Next we remind some estimates for solutions of the linear Schrödinger equation. We
need the following definition.

Definition 3.1. The pair (q, p) is an admissible pair if q, p ≥ 2 and satisfies

(3.2)
2

q
+

1

p
=

1

2
.

Theorem 3.2. If (q0, p0) and (q1, p1) are admissible, then we have the following estimates

‖eit∆u0‖L
q0
t L

p0
x

≤ c ‖u0‖L2 ,(3.3)

‖

∫

R

e−is∆F (·, s) ds‖L2 ≤ c ‖F‖
L

q′
0

t L
p′
0

x

,(3.4)

‖

∫

s<t

ei(t−s)∆F (·, s) ds‖L
q0
t L

p0
x

≤ c ‖F‖
L

q′
1

t L
p′
1

x

,(3.5)

where 1
pi

+ 1
p′

i

= 1
qi

+ 1
q′
i

= 1, i = 0, 1.

Solutions of (3.1) also satisfy the Kato smoothing effect

(3.6) sup
x

(

∫

R

|D1/2
x eit∆f(x)|2dt)1/2 ≤ c‖f‖2.

The proof of the estimates (3.3)–(3.5) can be found in [6]. Estimate (3.6) was proved
in [11].
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Next we consider the (IVP) associated to the Boussinesq linear equation:

(3.7)











∂2
t v − ∂2

xv + ∂4
xv = 0, x ∈ R, t > 0,

v(x, 0) = f(x),

∂tv(x, 0) = g(x).

Using Fourier transform we obtain formally

v(x, t) = V1(t)f + V2(t)g,

where

V1(t)f(x) =
1

2
(eitφ(ξ)f̂(ξ))∨(x) +

1

2
(e−itφ(ξ)f̂(ξ))∨(x),

V2(t)g(x) =
1

2i

(

eitφ(ξ) ĝ(ξ)

φ(ξ)
− e−itφ(ξ) ĝ(ξ)

φ(ξ)

)

∨

(x),
(3.8)

with φ(ξ) = |ξ|(1 + ξ2)
1

2 .

Lemma 3.3. For the operators V1(t) and V2(t) defined above we have the following esti-
mates:

‖V1(t)f‖2 ≤ ‖f‖2,(3.9)

‖V2(t)∂xf‖2 ≤ c‖f‖H−1,(3.10)

‖V2(t)∂
2
xf‖2 ≤ c‖f‖2.(3.11)

The operators V1(t) and V2(t) also satisfy estimates of Lp −Lq type similar to those of
the solution of the linear Schrödinger equation. The proof in this case is more complicated.
These estimates were obtained in [13] by using the oscillatory integrals theory developed
in [11].

Lemma 3.4. For f ∈ L2(R) we have

(

∫ T

0

‖V1(t)f‖
4
∞

dt
)1/4

≤ C(1 + T 1/4)‖f‖2,(3.12)

(

∫ T

0

‖V2(t)∂xf‖
4
∞

dt
)1/4

≤ C(1 + T 1/4)‖f‖H−1,(3.13)

(

∫ T

0

‖V2(t)∂
2
xf‖

4
∞

dt
)1/4

≤ C‖f‖2.(3.14)

Proof. See Lemma 2.5 in [13]. �

Next we have Kato’s smoothing effect estimates satisfied by solutions of (3.7).
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Lemma 3.5. The following estimates are satisfied

sup
x

(

∫ T

0

|D1/2
x V1(t)f(x)|2 dt)1/2 ≤ c(1 + T 1/2)‖f‖2,

sup
x

(

∫ T

0

|D1/2
x V2(t)∂xf(x)|2 dt

)1/2
≤ c(1 + T 1/2)‖f‖H−1,

sup
x

(

∫ T

0

|D1/2
x V2(t)∂

2
xf(x)|2 dt

)1/2
≤ c(1 + T 1/2)‖f‖2.

(3.15)

Proof. See references [11] and [13]. �

To end this section we give some estimates on the operator Γ := (−∆)−1/2∂t needed in
the proof of global existence of solutions.

Lemma 3.6. Let

ΓV1(t)f(x) =

∫

R

iei(tφ(ξ)+xξ)|ξ|−1φ(ξ)f̂(ξ) dξ,

ΓV2(t)∂xf(x) =

∫

R

ei(tφ(ξ)+xξ) isgn(ξ)φ(ξ)f̂(ξ)

|ξ|(1 + ξ2)1/2
dξ,

ΓV2(t)∂
2
xf(x) =

∫

R

ei(tφ(ξ)+xξ) isgn(ξ)φ(ξ) f̂(ξ)

(1 + ξ2)1/2
dξ.

(3.16)

Then we have

‖ΓV1(t)f(x)‖2 ≤ c‖f‖1,2,

‖ΓV2(t)∂xf(x)‖2 ≤ c‖f‖2,

‖ΓV2(t)∂
2
xf(x)‖2 ≤ ‖f‖1,2.

(3.17)

4. Local Theory in L2

In this section we consider the initial value problem (1.1) with data u0, v0 ∈ L2(R)
and v1 = h′ ∈ H−1(R). Our purpose is to prove Theorem 2.1. To do so we define an
integral operator and a convenient metric space where this integral operator turns out to
be a contraction operator. Using the contraction mapping principle we obtain the desired
result. In the second part of this section we will show some smoothness properties present
in solutions of (1.1).

We begin by defining the operator

(4.1) Φ(u, v) = (Φ1(u, v), Φ2(u, v)),

where
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(4.2)















Φ1(u, v) = eit∆u0 − i

∫ t

0

ei(t−s)∆(uv + α|u|2u)(s) ds,

Φ2(u, v) = V1(t)v0 + V2(t)h
′ +

∫ t

0

V2(t − s)∂2
x(β|v|

p−1v + |u|2) ds.

Consider the function space

(4.3) E+(T, a) =











(u, v) : u ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R));

v ∈ C([0, T ] : L2(R)) ∩ L4([0, T ] : L∞(R));

and ||||(u, v)|||| ≤ a,

where

||||(u, v)|||| = max
{

sup
[0,T ]

‖u(t)‖2, ‖u‖L4

T
L∞

x
, sup

[0,T ]

‖v(t)‖2, ‖v‖L4

T
L∞

x

}

.

It is not difficult to show that E+(T, a) is a complete metric space.

Proposition 4.1. There exist a and T positive, depending only on ‖u0‖2 , ‖v0‖2, ‖v1‖H−1,
and p, α, β in an appropriated manner, such that if (u, v) ∈ E+(T, a) then Φ(u, v) ⊂
E+(T, a) and the map

Φ : E+(T, a) → E+(T, a)

is a contraction.

Proof. We first estimate Φ1. By Minkowski’s inequality, group properties and Hölder’s
inequality it follows that

(4.4) sup
[0,T ]

‖

∫ t

0

ei(t−τ)∆(uv) dτ‖2 ≤ sup
[0,T ]

∫ t

0

‖uv‖2 dτ ≤ cT 3/4 sup
[0,T ]

‖u‖2 ‖v‖L4

T
L∞

x
.

The same argument used in (4.4) produces

(4.5) sup
[0,T ]

‖

∫ t

0

ei(t−τ)∆|u|2u dτ‖2 ≤ cT 1/2 sup
[0,T ]

‖u‖2
2 ‖u‖L4

T
L∞

x
.

Combining (4.4), (4.5), group properties and the definition (4.2) we get

(4.6) sup
[0,T ]

‖Φ1(u, v)(t)‖2 ≤ c‖u0‖2 + cT 3/4 ||||(u, v)||||2 + c|α| T 1/2 ||||(u, v)||||3.

On the other hand, Minkowski’s inequality, estimate (3.3), (4.4) and (4.5) give

(4.7) ‖Φ1(u, v)‖L4

T
L∞

x
≤ c‖u0‖2 + cT 3/4 ||||(u, v)||||2 + c|α| T 1/2 ||||(u, v)||||3.

Now we estimate Φ2.
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From Minkowski’s inequality, estimate (3.10) and Hölder’s inequality it follows that

‖

∫ T

0

V2(t − τ)∂2
x(β|v|

p−1v + |u|2) dτ‖2

≤

∫ T

0

|β| ‖|v|p−1v‖2 + ‖|u|2‖2 d τ

≤ c |β|T (5−p)/4 sup
[0,T ]

‖v‖2 ‖v‖
p−1

L4

T
L∞

x
+ c T 3/4 sup

[0,T ]

‖u‖2 ‖u‖L4

T
L∞

x
.

(4.8)

Inequality (4.8) combined with the estimates (3.8) and (3.9) yield

sup
[0,T ]

‖Φ2(u, v)(t)‖2

≤ c‖v0‖2 + c‖h‖H−1 + c|β|T (5−p)/4 ||||(u, v)||||p + cT 3/4 ||||(u, v)||||2.
(4.9)

Using Minkoswki’s inequality, estimate (3.14) and Hölder’s inequality we obtain

‖

∫ T

0

V2(t − τ)∂2
x(β|v|

p−1v + |u|2) dτ‖L4

T
L∞

x

≤ c (|β|T (5−p)/4 sup
[0,T ]

‖v‖2 ‖v‖
p−1

L4

T
L∞

x
+ C T 3/4 sup

[0,T ]

‖u‖2 ‖u‖L4

T
L∞

x
).

(4.10)

The last estimate combined with estimates (3.12) and (3.13) imply

‖Φ2(u, v)‖L4

T
L∞

x
≤ c(1 + T 1/4)‖v0‖2 + c(1 + T 1/4)‖h‖H−1

+ c|β| T
5−p

4 ||||(u, v)||||p + C T 3/4||||(u, v)||||2.
(4.11)

Now let a = 4cδ where δ = max {δ1, δ2, δ3} with ‖u0‖2 ≤ δ1, ‖v0‖2 ≤ δ2 and
‖h‖H−1 ≤ δ3. From (4.6), (4.7), (4.9) and (4.11) it follows

sup
[0,T ]

‖Φ1(u, v)‖2 ≤ 2cδ (1 + c323δT 3/4 + 25c3|α|δ2T 1/2),

‖Φ1(u, v)‖L4

T
L∞

x
≤ 2cδ (1 + c323δT 3/4 + 25c3|α|δ2T 1/2),

sup
[0,T ]

‖Φ2(u, v)‖2 ≤ 2cδ (1 + cp2p−1|β|δp−1T 5−p/4 + 2c2δT 3/4),

‖Φ2(u, v)‖L4

T
L∞

x
≤ 2cδ (1 + T 1/4 + cp2p−1|β|δp−1T 5−p/4 + 2c2δT 3/4).

(4.12)

Therefore fixing T such that

c323δT 3/4 + 25c3|α|δ2T 1/2 < 1,

cp2p−1|β|δp−1T 5−p/4 + 2c2δT 3/4 < 1,

T 1/4 + cp2p−1|β|δp−1T 5−p/4 + 2c2δT 3/4 < 1,

(4.13)

the first part of the proposition follows.
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Using a similar argument we can also establish the next inequalities

||||Φ1(u, v) − Φ1(ũ, ṽ)|||| ≤ {c T 3/4(||||(u, v)||||+ ||||(ũ, ṽ)||||),

+ c|α| T 1/2(||||(u, v)||||2 + ||||(ũ, ṽ)||||2)}||||(u, v)− (ũ, ṽ)||||,

||||Φ2(u, v) − Φ2(ũ, ṽ)|||| ≤ {c|β| T 5−p/4(||||(u, v)||||p−1 + ||||(ũ, ṽ)||||p−1)

+ c T 3/4(||||(u, v)|||| + ||||(ũ, ṽ)||||)}||||(u, v)− (ũ, ṽ)||||.

(4.14)

The same argument used in (4.12) and (4.13) shows then that the operator Φ is a con-
traction in E+(T, a). �

Proof of Theorem 2.1. The above proposition proves existence, uniqueness and local
Lipschitz dependence with respect to the initial data in the space E+(T, a). Using unique-
ness we can extend the result in the space C([−T, T ]; L2(R)) ∩ L4([−T, T ]; L∞(R)). This
proves the theorem. �

Next we establish some regularity properties for solutions of IVP (1.1). More precisely,
solutions of (1.1) satisfy Kato’s smoothing effect estimates. That is,

Proposition 4.2. If (u, v) is a solution of the system (1.1) with initial data (u0,v0, v1)
∈ L2 × L2 × H−1, then

(4.15) D1/2
x u, D1/2

x v ∈ L∞(R : L2[0, T ]).

Proof. From Theorem 2.1 we have that a solution of (1.1) satisfies

u(x, t) = eit∆u(0) − i

∫ t

0

ei(t−s)∆∂2
x (uv + α|u|2u)(s) ds.

From Theorem 3.2 (3.6) and an argument as in (4.4) it follows that

sup
x

‖D1/2
x u(x, ·)‖L2

t
≤ c‖u0‖2 +

∫ T

0

‖D1/2
x ei(t−s)∆(uv + α|u|2u)(s)‖L∞

x L2
t
ds

≤ C‖u0‖2 + C

∫ T

0

‖uv + α|u|2u‖L2 ds

≤ C‖u0‖2 + cT 3/4 ‖u‖L4

T
L∞

x
‖v‖L∞

T
L2 + CT 1/2 |α| ‖u‖2

L4

T
L∞

x
‖u‖L∞

T
L2.

(4.16)

On the other hand,

v(x, t) = V1(t)v0 + V2(t)v1 +

∫ t

0

V2(t − s) ∂2
x(β|v|

p−1v + |u|2)(s)ds.

Applying Lemma 3.5, Minkowski’s inequality and Hölder’s inequality we have

‖D1/2
x v‖L∞

x L2

T
≤ c(1 + T 1/2)‖v0‖2 + c(1 + T 1/2)‖h‖H−1

+ c|β|T (5−p)/4 ‖v‖p−1

L4

T
L∞

x
‖v‖L∞

T
L2

x
+ cT 4/3 ‖u‖L4

T
L∞

x
‖u‖L∞

T
L2

x
.

(4.17)

This completes the proof of the proposition. �
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5. Critical Case in L2

In what follows we analyze the critical case p = 5 for initial data u0 ∈ L2, v0 ∈ L2 and
v1 = h′ ∈ H−1. We prove that in this case there is still a local solution, but the time of
existence of the solution depends not only on the size of the initial data, but also on their
position.

Proof. We consider the complete metric space:

(5.1) E+(T, b) =



















(u, v) : u, v ∈ C([0, T ]; L2(R))∩ ∈ L4([0, T ]; L∞(R));

sup
[0,T ]

‖u(t)‖2 ≤ b, ‖u‖L4

T
L∞

x
≤ b, ‖v‖L4

T
L∞

x
≤ b;

sup
[0,T ]

‖v(t) − ṽ(t)‖2 ≤ b,

where ṽ(t) = V1(t)v0 + V2(t)v1.
As in the non critical case, we will prove that for ‖u0‖2 ≤ b and sufficiently small T ,

the operator Φ is well defined in E+(T, b) and is a contraction. The difference now is on
the estimates of the operator Φ2. Observe that from the definition of the space E+(T, b),
we only have to estimate for Φ2 the ‖ · ‖L4

T
L∞

x
norm.

We begin with the simple observation that if λ > 0 then, for sufficiently small T , we
have:

(5.2) ‖V1(t)v0‖L4

T
L∞

x
≤ λ, ‖V2(t)v1‖L4

T
L∞

x
≤ λ.

Then by Minkowski’s inequality and the argument used in (4.10) we have

‖Φ2(u, v)‖L4

T
L∞

x
≤ 2λ + c |β|

∫ T

0

‖v5‖2 dτ + c

∫ T

0

‖|u|2‖2 dτ

≤ 2λ + c |β|

∫ T

0

(‖v5 − v4ṽ‖2 + ‖v4ṽ‖2) dτ + c T 3/4 sup
[0,T ]

‖u‖2‖u‖L4

T
L∞

x

≤ 2λ + c |β|(sup
[0,T ]

‖v − ṽ‖2 + sup
[0,T ]

‖ṽ‖2)‖v‖
4
L4

T
L∞

x
+ c T 3/4 sup

[0,T ]

‖u‖2‖u‖L4

T
L∞

x
.

Thus

‖Φ2(u, v)‖L4

T
L∞

x
≤ 2λ + c T 3/4b2 + c |β|(b + M)b4,

where

M := sup
[0,T ]

‖ṽ‖2.

Setting b = 4λ and choosing λ and T small enough such that

(5.3) 24c T 3/4λ2 + 28|β|(4λ + M)λ4 ≤ 2λ

we obtain

(5.4) ‖Φ2(u, v)‖L4

T
L∞

x
≤ 4λ = b.
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We also have the estimate

‖Φ2(u, v) − ṽ‖ ≤ c |β|(sup
[0,T ]

‖v − ṽ‖2 sup
[0,T ]

‖ṽ‖2)‖v‖
4
L4

T
L∞

x
+ c T 3/4 sup

[0,T ]

‖u‖2‖u‖L4

T
L∞

x
.

Therefore

(5.5) sup
[0,T ]

‖Φ2(u, v) − ṽ‖2 ≤ c T 3/4b2 + c|β|(b + M)b4 ≤ 2λ ≤ b.

From (5.3), (5.4) and the estimates for ‖Φ1(u, v)‖ similar to those in Proposition 4.1
we obtain that Φ is well defined (observe that these estimates do not use the sup

[0,T ]

‖u‖2

norm.)
To see that Φ is a contraction, we use (4.10) to obtain

(5.6) ‖Φ2(u, v)(t) − Φ2(ū, v̄)(t)‖2 ≤ c(|β| b4 + T 3/4 b)(sup
[0,T ]

‖v − v̄‖2 + sup
[0,T ]

‖u − ū‖2).

Finally, following the estimate in (4.11) we obtain

(5.7) ‖Φ2(u, v) − Φ2(ū, v̄)‖L4

T
L∞

x
≤ c(|β|b4 + b T 3/4)(sup

[0,T ]

‖v − v̄‖2 + sup
[0,T ]

‖u − ū‖2)

From (5.5), (5.6) and (5.3) we see that Φ2 is a contraction for λ and T small. As in
Proposition 4.1 we see that Φ1 is a contraction for small T, and then Φ is a contraction.
Again the estimates for Φ1 do not use the sup

[0,T ]

‖u(t)‖2 norm. This completes the proof. �

6. Local Theory in H1

In this section we consider the problem (1.1) with initial data u0 ∈ H1(R), v0 ∈ H1(R),
v1 = h′ ∈ L2(R). In this case, the restriction p < 5 is not necessary since we can use the
Sobolev embedding theorem in the estimates. The proof of Theorem 2.5 is analogous to
the one given for the L2 case, but now we have to estimate nonlinear terms involving an
additional derivative. We begin establishing the following result.

Proposition 6.1. Consider the operator Φ defined in section 4 and the space

(6.1) E+(T, a) =

{

(u, v) : u, v ∈ C([0, T ]; H1(R));

||||(u, v)|||| ≤ a.

where

||||(u, v)|||| = max
{

sup
[0,T ]

‖u(t)‖H1, sup
[0,T ]

‖v(t)‖H1

}

.

Then, there exist a, T positive numbers, only depending on ‖u0‖H1, ‖v0‖H1, ‖h‖L2, and
|α|, |β|, p such that the map Φ = (Φ1, Φ2) satisfies

Φ : E+(T, a) → E+(T, a)

and is a contraction.
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Proof. We only estimate the terms ∂xΦ1(u, v) and ∂xΦ2(u, v) in the L2-norm.

‖∂xΦ1(u, v)(t)‖2 ≤ ‖∂xu0‖2 +

∫ T

0

‖∂x(uv)‖2 + |α|‖∂x(u|u|
2)‖ ds

≤ c‖u0‖1,2 + c

∫ T

0

‖v‖
1/2
2 ‖∂xv‖

1/2
2 ‖∂xu‖2 ds

+ c

∫ T

0

(‖u‖
1/2
2 ‖∂xu‖

1/2
2 ‖∂xv‖2 + |α| ‖∂xu‖

2
2‖u‖2) ds

≤ c‖u0‖1,2 + c T (||||(u, v)||||2 + ||||(u, v)||||3).

(6.2)

For ∂xΦ2 we have:

‖∂xΦ2(u, v)(t)‖2 ≤ c (‖∂xv0‖2 + ‖∂xh‖H−1) + c

∫ t

0

‖∂x(β|v|
p−1v + |u|2)‖2 ds,

≤ c (‖v0‖1,2 + ‖h‖2) + c T (||||(u, v)||||p + ||||(u, v)||||2).

(6.3)

These estimates plus an argument similar to the one used in section 4 allow us to
conclude that Φ is a contraction. �

Proof of Theorem 2.5. The proof is analogous to the proof of Theorem 2.1 so it will be
omitted. �

We end this section with some regularity properties of the solutions given by Theorem
2.5.

Proposition 6.2. If (u, v) is a solution of (1.1) with initial data in H1 × H1 × L2 then

u, v, ∂xu, ∂xv ∈ L4([−T, T ]; L∞(R)),(6.4)

D3/2
x u, D3/2

x v ∈ L∞(R : L2[−T, T ]).(6.5)

Proof. We first prove (6.4). Using the estimate (3.3), the argument in (4.3) and Sobolev’s
lemma we have

(6.6) ‖∂xu‖L4

T
L∞

x
≤ ‖∂xu0‖2 + cT{sup

[0,T ]

‖u(t)‖1,2 sup
[0,T ]

‖v(t)‖1,2 + |α| sup
[0,T ]

‖u(t)‖3
1,2}.

Using Lemma 3.4, the argument (6.3) and Sobolev’s lemma we obtain

(6.7) ‖∂xv‖L4

T
L∞

x
≤ c‖v0‖1,2 + c‖h‖2 + cT (sup

[0,T ]

‖v(t)‖p
1,2 + sup

[0,T ]

‖u(t)‖2
1,2).

The affirmation clearly follows from (6.6) and (6.7).
The proof of (6.5) follows a similar argument as the one used in the proof of Proposition

4.2. So it will be omitted.
�
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Finally, we conclude this section showing that

(−∆)−1/2∂tv ∈ C([0, T ]; L2(R)).

In fact, using the integral equation, Lemma 3.6 and Sobolev’s lemma, it follows that

(6.8) sup
[0,T ]

‖(−∆)−1/2∂tv‖2 ≤ c‖v0‖1,2 + ‖h‖2 + cT (sup
[0,T ]

‖v(t)‖p
1,2 + sup

[0,T ]

‖u(t)‖2
1,2).

Theorem 2.5 implies the result.
This estimate will be useful to establish an a priori estimate for the H1 norm.

7. Global Theory in H1

Next we prove that under some conditions on the initial data the solutions obtained in
Theorem 2.5 can be extended to any time. More precisely, we will show that for β > 0
the (IVP) (1.1) is globally well-posed for any data. Meanwhile for β < 0 global solutions
will be obtained for small data. We begin establishing the conservation laws we need to
show our global result.

Lemma 7.1. The following quantities are conserved by solutions of system (1.1)

K(t) = ‖u(·, t)‖2
2,(7.1)

E(t) = ‖∂xu‖
2
2 +

∫

v|u|2dx +
1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

2
‖v‖2

2(7.2)

+
β

p + 1

∫

|v|p+1 dx +
1

2
‖∂xv‖

2
2 +

α

2

∫

|u|4 dx.

Proof. To prove these identities we will proceed formally. To justify the operations we
can use, for instance, Kato’s quasilinear theory [9] to obtain smooth solutions for system
(1.2).

To prove (7.1) we only have to multiply the first equation by ū, integrate over x and
take the imaginary part.

To show (7.2) we argue as follows: Multiplying the first equation of the system by ∂tū,
integrating the result over x and taking its real part we obtain:

(7.3)
d

dt

(

∫

|∂xu|
2 dx +

α

4

∫

|u|4 dx
)

+

∫

∂t(|u|
2) v dx = 0.

On the other hand, applying the operator (−∆)−1/2 to the second equation in (1.1),
multiplying by (−∆)−1/2∂tv the result and integrating by parts with respect to x we get

(7.4)
1

2

d

dt

(

‖(−∆)−1/2∂t v‖2
2 + ‖∂xv‖

2
2 + ‖v‖2

2 +
β

p + 1

∫

|v|p+1 dx
)

+

∫

|u|2∂tv dx = 0

Adding (7.3) and (7.4) we can deduce (7.2). �
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Proof of Theorem 2.7

Case β > 0. From (7.2) we have

‖∂xu‖2 +
1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

2
‖v‖2

2 +
1

2
‖∂xv‖

2
2

= E(0) −

∫

(v|u|2)dx −
β

p + 1

∫

|v|p+1dx −
α

2

∫

|u|4 dx

≤ E(0) + |

∫

(v|u|2) dx| + |
α

2

∫

|u|4 dx|.

(7.5)

Using Gagliardo-Nirenberg’s type inequalities we obtain

|

∫

(v|u|2)dx| ≤ ‖v‖∞‖u‖2
2 ≤

1

4
‖v‖2

2 +
1

4
‖∂xv‖

2
2 +

1

2
K4,

and
|α|

2

∫

|u|4 dx =
|α|

2
‖u‖4

4 ≤
1

2
‖∂xu‖

2
2 + c‖u‖6

2 =
1

2
‖∂xu‖

2
2 + cK6.

for some constant c.
Then we have

‖∂xu‖2 +
1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

2
‖v‖2

2 +
1

2
‖∂xv‖

2
2

≤ E(0) +
1

4
‖v‖2

2 +
1

4
‖∂xv‖

2
2 +

1

2
K4 +

1

2
‖∂xu‖

2
2 + cK6.

(7.6)

Thus
1

2
‖∂xu‖2 +

1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

4
‖v‖2

2 +
1

4
‖∂xv‖

2
2 ≤ E(0) +

1

2
K4 + cK6.

Since the last quantity is constant, we can repeat the argument of local existence of
solution at time T arriving to a solution for any positive time. The same holds for
negative time. �

Case β < 0. As in the previous case we have

‖∂xu‖
2
2 +

1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

2
‖v‖2

2 +
1

2
‖∂xv‖

2
2

≤ E(0) +
1

2
K4 + cK6 +

|β|

p + 1

∫

|v|p+1 dx.

From the Sobolev embedding theorem we have ‖v‖p+1 ≤ c‖v‖H1 . Using this inequality
we obtain

1

4
‖v‖H1 ≤

1

2
‖∂xu‖2 +

1

2
‖(−∆)−1/2∂tv‖

2
2 +

1

4
‖v‖2

2 +
1

4
‖∂xv‖

2
2

≤ E(0) +
1

2
K4 + cK6 +

|β|

p + 1

∫

|v|p+1dx

≤ M + c‖v‖p+1
H1 .

(7.7)
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Thus

‖v‖H1 − c‖v‖p+1
H1 ≤ M,

where M = 1
4
(E(0) + 1

2
K4 + cK6) is a constant.

Since the function x− cxp+1 is not negative for small x, we have that M is not negative
if ‖v(·, 0)‖H1 is sufficiently small.

Also, the function x− cxp+1 has maximum value at x = xp = ( 1
c(p+1)

)
1

p . We denote this

maximum by yp.
Then, if ‖u(·, 0)‖H1 is small enough, we have: 0 ≤ M ≤ yp

2
. In this case, the values of

x for which x − cxp+1 ≤ M are contained in two disjoint intervals [0, xM ] and [x̄M ,∞).
Then, if ‖v(0)‖H1 ≤ xM we have, by continuity:

‖v(t)‖H1 ≤ xM

for each t ∈ [−T, T ].
Finally, we have

1

2
‖∂xu‖2 +

1

2
‖(−∆)−1/2∂tv‖

2
2 ≤ M +

1

4
‖v‖H1 + c‖v‖p+1

H1 .

Since this last quantity is bounded, we can proceed as in the previous case to extend the
solution. �
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