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Abstract

In this work, we determine the largest α for which the nilpotent group of 4-by-4 triangular
matrices with integer coefficients and 1 in the diagonal embeds into the group of C1+α diffeomor-
phisms of the closed interval.

Introduction

This work deals with the next general two-fold question:

Given a group G of orientation-preserving homeomorphisms of a manifold M , is it conjugate to
a group of diffeomorphisms of M? If so, how smooth can this action be made?

In dimension larger than 1, the first half of the question has, in general, a negative answer, even
for the action of a single homeomorphism [5]. However, in the case where M has dimension 1, this
turns out to be very interesting, and the answer deeply depends on the dynamical/algebraic structure
of the action/group considered. For instance, from the dynamical point of view, the classical Denjoy
theorem says that a C2 (more generally, C1+bv) orientation-preserving circle diffeomorphism with
irrational rotation number is necessarily conjugate to a rotation, hence minimal. On the other hand,
in lower regularity, there are the so-called Denjoy counterexamples, namely, C1+α diffeomorphisms
with irrational rotation number that admit wandering intervals; besides, every circle homeomorphism
is conjugate to a C1 diffeomorphism. From the algebraic point of view, there is an important
obstruction for a group G to admit a faithful action by C1-diffeomorphisms of a 1-manifold with
boundary: every finitely-generated subgroup of G must admit a nontrivial homomorphism onto Z
(see [14]; see also [9] and [1]).

In this article, we focus on nilpotent group actions on the closed interval [0, 1]. (Extensions of
our results to the case of the circle are left to the reader.) The picture for Abelian group actions is
essentially completed by the works [3, 15]. For non-Abelian nilpotent groups, an important theorem
of J.Plante and W.Thurston establishes that they do not embed in the group of C2-diffeomorphisms
of [0, 1] (see [12]). However, according to B.Farb and J.Franks, every finitely-generated, torsion-free
nilpotent group can be realized as a group of C1 diffeomorphisms of [0, 1] (see also [6]). Motivated
by this, we pursue the problem below, which was first addressed in [4] and stated this way in [8]. For
the statement, recall that a diffeomorphism f is said to be of class C1+α if its derivative is α-Holder
continous, that is, there exists C > 0 such that |f ′(x)− f ′(y)| ≤ C|x− y|α holds for all x, y.

Problem. Given a nilpotent subgroup G of Homeo+([0, 1]), find the largest α such that G embeds
into the group Diff1+α

+ ([0, 1]) of C1+α diffeomorphisms.

1



There are two results in this direction. First, in [2] (see also [7]), the aforementioned Farb-Franks
action of Nd, the nilpotent group of d-by-d lower triangular matrices with integer entries and 1 in the
diagonal, is studied in detail. In particular, it is showed that this action cannot be made of class C1+α

for α ≥ 2
(d−1)(d−2) , yet it can be made C1+α for any smaller α. Second, a recent result of K.Parkhe [10]

establishes that any action of a finitely-generated nilpotent group on [0, 1] is topologically conjugate
to an action by C1+α-diffeomorphisms for any α < 1/κ, where κ is the polynomial growth degree of
the group.

For the particular case of N4, the regularity obtained by Parkhe is hence smaller than that of
the Farb-Franks action, namely, C1+α for α < 1/3. Somehow surprisingly, even this regularity is not
sharp, as it is shown by our

Theorem A. The group N4 embeds into Diff1+α
+ ([0, 1]) for every α < 1/2.

In [2], it is also shown that for any any d ∈ N, there is a nilpotent group of nilpotence degree d
embedded into Diff1+α

+ ([0, 1]), for any α < 1. (This is for instance the case of the Heissenberg group
N3.) This suggests that the optimal regularity of a nilpotent group embedding into Diff+([0, 1]) may
not depend on the degree of nilpotence. Our second result shows that, at least, this invariant is not
trivial, hence it is worth pursuing its study.

Theorem B. The group N4 does not embeds into Diff1+α
+ ([0, 1]) for any α > 1/2.

We point out that the C3/2 regularity is not covered by our results, though we strongly believe
that N4 does not admit an embedding in such regularity (compare [7]).

This article is organized as follows. In §1, the review some basic facts about the group N4 such
as normal forms; we also construct an action of N4 on Z3 that preserves the lexicographic order on
Z3. In §3, we show that for any α < 1/2, the action of N4 on Z3 can be projected into an action of
N4 on [0, 1] by C1+α diffeomorphisms, which shows Theorem A. Theorem B in turn is proved in §2.

All actions considered in this work are by orientation-preserving maps.

1 The group N4

Throughout this work, we use the following notation. Given two group elements x, y, we let [x, y] :=
xyx−1y−1, and xy := yxy−1. Recall that the derived series of a group G is defined by G0 := G and
Gi+1 := [Gi, Gi]. The group G is solvable of degree d if Gd is trivial but Gd−1 is not. The central
series of G is defined by G(0) := G and G(i+1) := [G,G(i)]. The group G is nilpotent of degree ` if
G(`) is trivial but G(`−1) is not.

The group N4 is by definition the group of matrices of the form
1 0 0 0
e 1 0 0
a f 1 0
c b d 1

 , (1)

where all the entries belong to Z. We will use the generating set S of N4 consisting of the matrices
for which all non-diagonal entries are 0 except for one which is 1. The elements of S will be denoted
by e, f, d, a, b, c, where each of these elements represent the generating matrix with a 1 in the position
corresponding to the letter in (1); for example,

e =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .
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The reader can easily check that N4 is isomorphic to the (inner) semidirect product 〈f, a, b, c〉o
〈e, d〉, where 〈f, a, b, c〉 ' Z4 and 〈d, e〉 ' Z2. The conjugacy action of Z2 on Z4 is given by

e : f 7→ fa−1 , a 7→ a , b 7→ bc−1 , c 7→ c, (2)

d : f 7→ fb , a 7→ ac , b 7→ b , c 7→ c. (3)

In particular, N4 is metabelian (i.e. it has solvability degree 2). Further, N4 has nilpotence degree
3: its lower central series is given by

N
(1)
4 = 〈a, b, c〉 , N (2)

4 = 〈c〉 , N (3)
4 = {id}.

It follows from equations (2) and (3) that any element of N4 can be written in a unique way as

fn1en2dn3an4bn5cn6 ,

where the exponents ni belong to Z. This will be our preferred normal form. It allows proving the
next

Lemma 1. Let φ : N4 → G be a group homomorphism such that φ(c) is a nontrivial element of G
with infinite order. Then φ is an embedding.

Proof: We first observe that, for (n1, n2) 6= (0, 0),

[φ(dn1en2), φ(an1b−n2cn3)] = φ([dn1en2 , an1b−n2cn3 ]) = φ(cn
2
1+n

2
2).

By the hypothesis, φ(cn
2
1+n

2
2) 6= id, which implies that the restriction of φ to both 〈a, b, c〉 and 〈d, e〉

is an embedding.
Further, for (n1, n2) 6= (0, 0), we have

φ([dn1en2an3bn4cn5 , an1b−n2 ]) = φ([dn1en2 , an1b−n2 ]) = φ(cn
2
1+n

2
2) 6= id,

thus the restriction of φ to 〈d, e, a, b, c〉 is an embedding. Finally we have that, for n0 6= 0,

φ([fn0en1dn2an3bn4cn5 , e]) = φ(an0cn4) 6= id.

Hence, φ is injective. �

Remark 1. An immediate consequence of Lemma 1 is that for every faithful action of N4 by home-
omorphisms of [0, 1], there is a point x0 ∈ (0, 1) such that N4 acts faithfully on its orbit. Indeed, it
suffices to consider x0 as any point moved by c.

We next construct an action of N4 by homeomorphisms of [0, 1]. Our method is close to the
construction of Farb and Franks, who first built an action of N4 on Z3 and then project it to an
action on [0, 1]; see [4] or [2]. However, it should be emphasized that our action is different, which
allows improving the regularity. We begin with

Proposition 1. Let e′, f ′, d′ ,a′, b′, and c′ be the maps from Z3 to Z3 defined by:

e′ : (i, j, k) 7→ (i+ 1, j, k),

d′ : (i, j, k) 7→ (i, j + 1, k),

f ′ : (i, j, k) 7→ (i, j, k − ij),
a′ : (i, j, k) 7→ (i, j, k − j), (4)

b′ : (i, j, k) 7→ (i, j, k + i),

c′ : (i, j, k) 7→ (i, j, k + 1).

Then the group N ′ generated by 〈e′, f ′, d′, a′, b′, c′〉 is isomorphic to N4.
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Proof: It follows from the definition that f ′, a′, b′ and c′ commute, and that the subgroup of N ′ that
they generate is normal and isomorphic to Z4. Further, the subgroup generated by {e′, d′} is Abelian,
and its action by conjugation on 〈f ′, a′, b′, c′〉 mimics equations (2) and (3). Therefore, by Lemma 1,
the application x 7→ x′, with x ∈ {e, d, f, a, b, c}, induces an isomorphism between N4 and N ′. �

We now let (Ii,j,k)(i,j,k)∈Z3 be a family of disjoint open intervals disposed on [0, 1] respecting the

(direct) lexicographic order of Z3, that is, Ii,j,k is to the left of Ii′,j′,k′ if and only if (i, j, k) ≺ (i′, j′, k′),
where � is the lexicographic order on Z3. Assume further that the union of this family of intervals is
dense in [0, 1]. Then, by some abuse of notation, we can define e, d, f to be the unique homeomorphism
of [0, 1] whose restriction to each of the intervals Ii,j,k is affine and send, respectively,

e : Ii,j,k 7→ Ii+1,j,k,

d : Ii,j,k 7→ Ii,j+1,k, (5)

f : Ii,j,k 7→ Ii,j,k+ij .

Since an affine map fixing a bounded interval must be the identity, Proposition 1 implies that the
homeomorphisms e, d, f generate a subgroup of Homeo+([0, 1]) isomorphic to N4. In order to show
Theorem A, in §3, we will use, instead of affine maps, the so-called Pixton-Tsuboi family of local
diffeomorphisms [13, 15].

2 Bounding the regularity

In this section, we show that the group N4 does not embed in Diff1+α
+ ([0, 1]) provided that α > 1/2.

We first reduce Theorem B to a combinatorial statement, namely Lemma 2 below.

2.1 The combinatorics prevents an embedding

Recall that every finitely-generated nilpotent group G of orientation-preserving homeomorphisms of
(0, 1) preserves a nontrivial Radon measure µ on (0, 1); see [11] or [8]. This measure induces a group
homomorphism, the so-called translation number homomorphism τµ : G→ R, whose kernel coincides
with the set of elements in G having fixed points, and such an element must fix all points in supp(µ),
the support of µ. Moreover, if τµ(G) has rank 2 or more, then G is semiconjugate to a group of
translations isomorphic to τµ(G).

Further, as any subgroup of a finitely-generated nilpotent group is also finitely generated, by
looking at the action of Ker(τµ) on any connected component J of (0, 1) \ supp(µ) we obtain a
Ker(τµ)-invariant measure on J with its corresponding translation number homomorphism. By
iterating this process, we obtain a (partial) filtration of the nilpotent group G.

Now, looking for a contradiction, we suppose that N4 faithfully acts by C1+α diffeomorphisms of
[0, 1], for some α > 1/2. In this case, the key point (whose proof is postponed to §2.2.) is the next

Lemma 2. Suppose that N4 is faithfully acting on [0, 1] by C1+α-diffeomorphisms for some α > 1/2.
Then there is a sequence of open intervals Jn+1 ( Jn ( . . . ( J0, and a filtration

Kn+1 ≤ Kn ≤ . . . ≤ K0 = N4,

with the following properties:

1. Ji is fixed by Ki, and the induced action of Ki on Ji admits no global fixed point;

2. Ki+1 = Ker(τµi), where µi is a Ki-invariant Radon measure on Ji and τµi : Ki → R is the
associated translation-number homomorphism;
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3. there exist g1, g2, g3 in N4 and non-negative integers i1 < i2 < i3 ≤ n, such that 〈g1, g2, g3〉 ' Z3

and gj ∈ Kij \Kij+1.

Lemma 2 provides us enough combinatorial information about the dynamics of N4. In concrete
terms, if we denote by g1, g2, g3 the elements provided by the conclusion of the lemma, and we let
x0 be a point in [0, 1] not fixed by g3, then the only element in the Abelian group 〈g1, g2, g3〉 fixing
x0 is the trivial one. Further, by eventually changing some of g1, g2, g3 by their inverses, we can
suppose that they move x0 to the right. Hence, if we define I0,0,0 as the interval (x0, g3(x0)) and
In1,n2,n3 := gn1

1 gn2
2 gn3

3 (I0,0,0), then the intervals Ii,j,k are pairwise disjoint, they are disposed on [0, 1]
respecting the lexicographic order of the indices, and

g1(Ii,j,k) = Ii+1,j,k , g2(Ii,j,k) = Ii,j+1,k , g3(Ii,j,k) = Ii,j,k+1.

A contradiction is then provided by the following theorem from [7] (see also [3])

Theorem 1. Let k≥2 be an integer, and let f1, . . . , fk be commuting C1-diffeomorphisms of [0, 1].
Suppose that there exist disjoint open intervals In1,...,nk disposed on (0, 1) respecting the lexicographic
order and so that for all (n1, . . . , nk)∈Zk and all i∈{1, . . . , k},

fi(In1,...,ni,...,nk) = In1,...,ni+1,...,nk .

Then f1, . . . , fk−1 cannot be all simultaneously of class C1+1/(k−1) provided that fk is of class C1+α

for some α > 0.

2.2 Proof of Lemma 2

As discussed in the previous section, in order to finish the proof of Theorem B, we need to prove
Lemma 2. A first crucial step is given by the next result, which can be thought of as a version of
Denjoy’s theorem on the interval and corresponds to an extension of [3, Theorem C] for the case
where the maps are not assumed to commute.

Theorem 2. Given an integer d ≥ 2 and α > 1/d, suppose that G is a subgroup of Diff1+α
+ ([0, 1])

whose action is semiconjugate to a free action by translations of Zd. Then G is Abelian and acts
minimally on (0, 1).

For the proof of Theorem 2, we state a lemma that is a special case of [3, Lemma 2.2].

Lemma 3. Let Γ be a group of C1+α-diffeomorphism of a 1-dimensional compact variety M1. Sup-
pose there exists a finite subset G of Γ, and interval I of M1, and a constant S < ∞, so that the
following holds: For every n ∈ N, there is an element hn = fin . . . fi1 ∈ Γ such that each fik belongs
to G and

n−1∑
k=1

|fik . . . fi1(I)|α ≤ S.

Then, there is a positive constant L = L(α, S, |I|,G) such that if hn(I) does not intersect I but is con-
tained in the L-neighborhood of I, then hn has an hyperbolic fixed point (inside the 2L-neighborhood
of I).

Proof of Theorem 2: Looking for a contradiction, we suppose that the action of G is not minimal.
We let I be a maximal open interval that is mapped into a single point by the semiconjugacy into
a group of translations, and we let f1, . . . , fd ∈ G be elements whose semiconjugate images generate
Zd.
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Following [3], let us consider the Markov process on Nd0 with transtion probabilities

p
(
(n1, . . . , ni, . . . , nd)→ (n1, . . . , 1 + ni, . . . , nd)

)
:=

1 + ni
d+ n1 + . . .+ nd

.

Let us denote by Ω the space of infinite paths ω endowed with the induced probability measure P.
Let S : Ω→ R be defined by

S(w) =
∑
k≥0
|Iωk |

α,

where wk = (n1,k, . . . , nd,k) denotes the position of w at time k, and In1,...,nd := fn1
1 . . . fndd (I). Since

α > 1/d, this function has a finite expectation (see [3]). Thus, its value at a generic random sequence
ω is finite. Moreover, by an easy application of the Bernoulli 0 − 1 law, given L > 0 we have that,
for any generic sequence ω, infinitely many intervals Iωk are contained in the L-neighborhood of I.
By Lemma 3, a generic sequence ω would hence lead to infinitely many nontrivial elements having
hyperbolic fixed points, which contradicts the freeness of the action. �

We now proceed to the proof of Lemma 2. Suppose N4 is acting faithfully by C1+α diffeomor-
phisms of [0, 1] for some α > 1/2. By Remark 1, if x0 ∈ [0, 1] is a point moved by c, then N4 acts
faithfully on its orbit.

The filtration of intervals Ji and subgroups Ki of Lemma 2 are easy to define. We let K0 := N4

and define J0 as the smallest K0-invariant open interval containing x0. We also let µ0 be a K0-
invariant Radon measure on J0, and we denote by τµ0 : N4 → R its associated translation-number
homomorphism.

In general if Ji, Ki and τµi : Ki → R have been already defined and the action of Ki on Ji has
no global fixed point, then we let Ki+1 := Ker(τµi). If Ki+1 does not fix x0, then we let Ji+1 be
the smallest Ki+1-invariant open interval containing x0, we denote by µi+1 a Ki+1-invariant Radon
measure on Ji+1 and by τµi+1 : Ki+1 → R its associated translation-number homomorphism. If Ki+1

fixes x0, then we stop the filtration at the previous step.
Notice that the procedure above has to end at some moment, because G is nilpotent, hence has

finite (torsion-free) rank. Therefore, in order to finish the proof of Lemma 2, it only remains to
show the third point in its conclusion, namely that the number of “levels” is at least 3, and the
corresponding gi can be chosen to commute. The rest of this section is devoted to this task.

Since N4 is non-Abelian, Theorem 2 implies that the image τµ0(N4) ⊂ R has rank 1. Thus, as
N4 is finitely generated, up to rescaling µ0, we have

τµ0 : N4 → Z.

As 〈a, b, c〉 is the commutator subgroup [N4, N4], we conclude that there exist h1 and h2 in N4\〈a, b, c〉
such that K1 := Ker(τµ0) = 〈h1, h2, a, b, c〉, say

h1 = fm1em2dm3 , h2 = fn1en2dn3 , for some mi, ni in Z.

Notice that
[fm1em2dm3 , a] = cm3 and [fm1em2dm3 , b] = c−m2 . (6)

Therefore, the conjugacy action of 〈h1, h2〉 on 〈a, b, c〉 is nontrivial. To finish the proof, we will
separately analyze three cases. The first one will be when h1 and h2 commute modulo 〈c〉. The
other two cases correspond to different instances in which h1 and h2 do not commute modulo 〈c〉.
To differentiate them, we notice that

[fm1em2dm3 , fn1en2dn3 ] = (em2dm3)f
m1

(en2−m2dn3−m3)f
m1+n1

(d−n3e−n2)f
n1
,
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and
[f, e`dn] = a`b−nc`n. (7)

Using this, one readily checks that, modulo 〈c〉, we have that

[h1, h2] = [fm1em2dm3 , fn1en2dn3 ] ≡ (am2b−m3)m1 (an2−m2bm3−n3)m1+n1(a−n2bn3)n1

≡ am1n2−n1m2 bn1m3−m1n3 . (8)

Case 1: The elements h1 and h2 commute modulo 〈c〉.

We first claim that, in this case, τµ0(e) = 0 = τµ0(d), and hence τµ0(f) 6= 0. Indeed, equation (8)
yields

m1n2 = n1m2 and n1m3 = m1n3.

On the other hand, since K1/〈a, b, c〉 ' Z2, the set {(m1,m2,m3), (n1, n2, n3)} must be linearly
independent over Q. As n1(m1,m2,m3) − m1(n1, n2, n3) = 0, we conclude that n1 = m1 = 0. It
follows that some nontrivial power of e and some nontrivial power of d have trivial image under τµ0 .
Therefore, since Z is torsion free, we have that τµ0(e) = 0 = τµ0(d), and the claim follows.

Notice that, conversely, if τµ0(e) = 0 = τµ0(d), then m1 = n1 = 0, and (8) shows that h1 and h2
do commute modulo 〈c〉.

In particular, in Case 1, we may actually take

h1 = e and h2 = d,

which are commuting elements of N4.

Now, since c ∈ K1 = Ker(τµ0) does not fix x0, we have that the action of K1 on J1 has no global
fixed point. Further, (6) implies that K1 is non-Abelian, so Theorem 2 implies that τµ1(K1) has a
cyclic image. Notice that, again by (6), the element c belongs to Ker(τµ1).

Subcase 1.1: τµ1(〈a, b〉) 6= 0.

Then we can finish the proof of Lemma 2 by letting

g1 := f, g2 ∈ 〈a, b〉 such that τµ1(g2) 6= 0, and g3 := c.

Subcase 1.2: τµ1(〈a, b〉) = 0.

Let u, v be nontrivial elements in 〈e, d〉 such that τµ1(u) = 0, τµ1(v) 6= 0, and K2 := Ker(τµ1) =
〈u, a, b, c〉. It follows from (6) that there is h ∈ 〈a, b〉 such that id 6= [u, h] ∈ 〈c〉. In particular, K2 is
non-Abelian, and c is in the kernel of τµ2 . Besides, by Theorem 2, τ2(K2) is isomorphic to Z. There
are two possibilities:

• If τµ2(u) 6= 0, then we finish the proof of Lemma 2 by letting

g1 := v, g2 := u, g3 := c.

• If τµ2(u) = 0, then there is h′ ∈ 〈a, b〉 with nontrivial image under τµ2 . We hence finish the
proof of Lemma 2 by letting

g1 := f, g2 := h′, g3 := c.
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Case 2: The elements h1 and h2 do not commute modulo 〈c〉 and τµ0(f) 6= 0.

Notice that some element in 〈d, e〉 lies in Ker(τµ0), hence we can take

h1 = fm1em2dm3 , with m1 6= 0 , and h2 = e`dn.

Now, since h1 and h2 do not commute modulo 〈c〉, the subgroup 〈e, d〉 cannot be fully contained in
Ker(τµ0). Therefore, if we let p, q to be integers such that `q + pn = 1, then

τµ0(e−pdq) 6= 0.

Now since c ∈ K1 does not fix x0, we have that the action of K1 on J1 has no global fixed point.
Further, (6) implies that τµ1(c) = 0, which together with (7) implies that τµ1(a`b−n) = 0.

Notice that, as K1 = 〈fm1em2dm3 , e`dn, a, b, c〉 is non-Abelian, the image τµ1(K1) has rank 1.
Besides, it is determined by the image of the set {fm1em2dm3 , e`dn, apb q}, where `q + pn = 1.

Subcase 2.1: τµ1(fm1em2dm3) = 0.

In this case, we have that either e`dn or apb q has nontrivial image under τµ1 . In the first case,
we finish the proof by letting

g1 := e−pdq, g2 := e`dn, g3 := c,

and in the second case, by letting

g1 := f, g2 := aqb q, g3 := c.

Subcase 2.2: τµ1(fm1em2dm3) 6= 0.

If either e`dn or apbq has nontrivial image under τµ1 , then we can repeat the argument of Subcase
2.1. So, we assume that

τµ1(fm1em2dm3) 6= 0 , τµ1(e`dn) = 0 , τµ1(apbq) = 0.

In this case we, K2 = Ker(τµ1) is generated by the set {e`dn, a, b, c}. It then follows from (6) that
K2 is non-Abelian, and τµ2(c) = 0. By Theorem 2, the image τµ2(K2) has rank 1. There are two
possibilities:

• If τµ2(e`dn) 6= 0, then we finish the proof of Lemma 2 by letting

g1 := e−pdq, g2 := e`dn, g3 := c.

• If τµ2(e`dn) = 0, then some nontrivial w ∈ 〈a, b〉 must have a nonzero image under τµ2 . We can
hence finish the proof by letting

g1 := f, g2 := w, g3 := c.

Case 3: The elements h1 and h2 do not commute modulo 〈c〉 and τµ0(f) = 0.

Again, we can take
h1 = f and h2 = e`dn,

and if we let p, q to be integers such that `q + pn = 1, then

τµ0(e−pdq) 6= 0.
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Moreover, since c ∈ K1 does not fix x0, the action of K1 on J1 has no global fixed point. Further, by
(6), we have τµ1(c) = 0, which together with (7) implies that τµ1(a`b−n) = 0. Besides all of this, we
have that the image τµ1(K1) has rank 1, and it is determined by the image of the set {f, e`dn, apb q}.

Subcase 3.1: τµ1(f) = 0 and τµ1(e`dn) 6= 0.

In this case, we can finish the proof of Lemma 2 by letting

g1 := e−pdq, g2 := e`dn, g3 := c.

Subcase 3.2: τµ1(f) = 0, τµ1(e`dn) = 0.

There are three possibilities:

• If ` = 0, then we may take p = 1 and q = 0. Hence in this case the image τµ1(K1) is determined
by the image of the set {f, d, a}. Since τµ1(f) = τµ1(e`dn) = 0, it follows that τµ1(a) 6= 0. We
can hence finish the proof by letting

g1 := e , g2 := a , g3 := c.

• If n = 0, then we may proceed in an analogous way as above.

• Finally, assume that `n 6= 0. Since τµ1(apbq) 6= 0, we have K2 := Ker(τµ1) = 〈f, e`dn, a`b−n, c〉.
Moreover, by (6), we have [e`dn, a`b−n] = c2`n, so τµ2(c) = 0. By (7), this implies that
τµ2(a`b−n) = 0. As a consequence, the image of τµ2 is determined by the image of the set
{f, e`bn}. If, on the one hand, τµ2(f) 6= 0, then we can finish the proof by letting

g1 := apbq , g2 := f , g3 := c.

If, on the other hand, τµ2(e`bn) 6= 0, then we can finish the proof by letting

g1 := e−pdq , g2 := e`dn, g3 := c.

Subcase 3.3: τµ1(f) 6= 0 and τµ1(e`dn) 6= 0.

In this case, we can finish the proof by letting

g1 := e−pdq , g2 := e`dn , g3 := c.

Subcase 3.4: τµ1(f) 6= 0 and τµ1(e`dn) = 0.

In this case, 〈e`dn, a`b−n, c〉 is contained in K2. Let i be the smallest integer such that τµi is
defined on 〈e`dn, a`b−n, c〉 and that this restriction is a nontrivial morphism into R. By (6), we have
τµi(c) = 0, hence either e`dn or a`b−n has nontrivial image under τµi .

• If τµi(e
`dn) 6= 0, we can finish the proof of Lemma 2 by letting

g1 := e−pdq , g2 := e`dn , g3 := c.

• If τµi(a
`b−n) 6= 0, we can finish the proof of Lemma 2 by letting

g1 := f , g2 := a`b−n , g3 := c.

This finishes the proof of Lemma 2, hence that of Theorem B. �
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3 The embedding

We next prove Theorem A. For the rest of this work, we fix α such that 0 < α < 1/2. In order to
produce an embedding of N4 into Diff1+α

+ ([0, 1]), we will project to the interval the action provided
by Proposition 1 using the so-called Pixton-Tsuboi maps [13, 15]. This technique is summarized in
the next

Lemma 4. There exists a family of C∞ diffeomorphisms ϕJ
′,J
I′,I : I → J between intervals I, J , where

I ′ (resp. J ′) is an interval contiguous to I (resp. J) by the left, such that:
– (Equivariance) For all I, I ′, J, J ′,K,K ′ as above,

ϕK
′,K

J ′,J ◦ ϕ
J ′,J
I′,I = ϕK

′,K
I′,I ;

– (Derivatives at the endpoints) For all I, I ′, J, J ′ we have

DϕJ,J
′

I,I′ (x−) =
|J ′|
|I ′|

, DϕJ,J
′

I,I′ (x+) =
|J |
|I|
.

where x− (resp. x+) is the left (resp. right) endpoint of I.
– (Regularity) There is a constant M such that for all x ∈ I:

D log(DϕJ
′,J
I′,I )(x) ≤ M

|I|
·
∣∣∣∣ |I||J | |J ′||I ′| − 1

∣∣∣∣ .
provided that max{|I ′||I|, |J ′|, |J |} ≤ 2 min{|I ′||I|, |J ′|, |J |}.

To produce our action, we let Ii,j,k be a collection of intervals indexed by Z3 whose union is
dense in [0, 1] and that are disposed preserving the lexicographic order of Z3. We then define the
homeomorphisms d, e, f of [0, 1] as those whose restrictions to Ii,j,k coincide, respectively, with

ϕ
Ii+1,j,k−1,Ii+1,j,k

Ii,j,k−1,Ii,j,k
, ϕ

Ii,j+1,k−1,Ii,j+1,k

Ii,j,k−1,Ii,j,k
, ϕ

Ii,j,k+ij−1,Ii,j,k+ij
Ii,j,k−1,Ii,j,k

.

By (Equivariance), this produces a faithful action of N4 by homeomorphisms of [0, 1].

Proposition 2. For an appropriate choice of the lengths |Ii,j,k|, the homeomorphisms e, f, d are
simultaneously of class C1+α.

The rest of this work is devoted to the proof of this result. To begin with, we let p, q, r be positive
reals for which the following conditions hold:
(i) r < 2,
(ii) 4r ≤ p,
(iii) 4r ≤ q,
(iv) α ≤ 2

r − 1,
(v) 4 ≤ p(1− α),
(vi) 4 ≤ q(1− α),
(vii) 1/p+ 1/q + 1/r < 1.
For example, we can take p = q := 4/α and r := 4/3.

Now, let Ii,j,k be an interval such that

|Ii,j,k| :=
1

|i|p + |j|q + |k|r + 1
.
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Condition (vii) ensures that ∑
(i,j,k)∈Z3

∣∣Ii,j,k∣∣ <∞,
hence the Ii,j,k’s can be disposed on a finite interval respecting the lexicographic order. This interval
can be though of as [0, 1] after renormalization.

It is proved in [2] that, with any choice of lengths as above, the maps e and d are C1+α diffeo-
morphisms. Thus, in order to finish the proof, we need to show

Lemma 5. For any choice of lengths of intervals satisfying properties (i),...,(vii) above, the homeo-
morphism f is a C1+α diffeomorphism.

Notice that this lemma is equivalent to that the expression∣∣ logDf(x)− logDf(y)
∣∣

|x− y|α

is uniformly bounded (independently of x and y). To check this, due to property (Derivatives at
the endpoints) above, it suffices to consider points x, y in intervals Ii,j,k and Ii,j,k′ , respectively; this
means that the first “two levels” i and j coincide (compare [2, §3.3, III]). We first treat points x, y
in the same interval Ii,j,k, and then points in intervals with different indices k, k′.

Let us consider points x and y in the same interval Ii,j,k. By (Regularity) in Lemma 4 and the
Mean Value Theorem,

| logDf(x)− logDf(y)|
|x− y|α

≤ M

|Ii,j,k|α

∣∣∣∣ |Ii,j,k||Ii,j,k+ij |
|Ii,j,k+ij−1|
|Ii,j,k−1|

− 1

∣∣∣∣
= M

∣∣∣∣ (|i|p+|j|q+|k + ij|r+1)(|i|p+|j|q+|k − 1|r+1)

(|i|p+|j|q+|k|r+1)(|i|p+|j|q+|k + ij − 1|r+1)
− 1

∣∣∣∣ (|i|p+|j|q+|k|r+1)α.

Using the Mean Value Theorem, the last expression is easily seen to be smaller than or equal to

MC

(|i|p+|j|q+|k|r+1)1−α(|i|p+|j|q+|k + ij − 1|r+1)
, (9)

where

C := |i|pr(|k|+1)r−1 + |j|qr(|k|+1)r−1 + |i|pr(|k + ij|+1)r−1 + |j|qr(|k + ij|+1)r−1+

+ r(|k|+1)r−1 + r(|k + ij|+1)r−1 + |k + ij|rr(|k|+1)r−1 + |k|rr(|k + ij|+1)r−1.

We need to check that the expression in (9) is bounded (uniformly) by some constant depending
on p, q, r and α (but not on i, j, k). To do this, we will bound the leading terms in (9), which are
the following:

(I)
|i|pr(|k + ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α(|i|p+|j|q+|k + ij − 1|r+1)
,

(II)
|j|qr(|k + ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α(|i|p+|j|q+|k + ij − 1|r+1)
,

(III)
|k + ij|rr(|k|+1)r−1

(|i|p+|j|q+|k|r+1)1−α(|i|p+|j|q+|k + ij − 1|r+1)
,
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(IV )
|k|rr(|k + ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α(|i|p+|j|q+|k + ij − 1|r+1)
.

The term (I) is smaller than
r(|k|+|ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α
.

We have two cases:

• If |k|≤ |ij|, then r(|k|+|ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α ≤
r(2|ij|+1)r−1

(|i|p+|j|q+1)1−α . There are two possibilities:

– If |i| ≤ |j|, then r(2|ij|+1)r−1

(|i|p+|j|q+1)1−α ≤
r(2|j|2+1)r−1

(|j|q+1)1−α , which is bounded since 2(r − 1) ≤ q(1 − α),

which follows from conditions (i) and (iv) above.

– If |i| ≥ |j|, then r(2|ij|+1)r−1

(|i|p+|j|q+1)1−α ≤
r(2|i|2+1)r−1

(|i|p+1)1−α , which is again bounded since 2(r−1) ≤ p(1−α)

(conditions (i) and (iii)).

• If |ij|≤ |k|, then r(|k|+|ij|+1)r−1

(|i|p+|j|q+|k|r+1)1−α ≤
r(2|k|+1)r−1

(|k|r+1)1−α , and this expression is bounded because

α ≤ 1/r, which follows from (i) together with α < 1/2.

The term (II) is similar to (I), and it can be ruled out by the same procedure.

We next deal with (III). Since

|k + ij|r

|i|p+|j|q+|k + ij − 1|r+1

is obviously bounded and
(|k|+1)r−1

(|i|p+|j|q+|k|r+1)1−α
≤ (|k|+1)r−1

(|k|r+1)1−α
,

we have that the term (III) is bounded because α ≤ 1/r.

Finally, we deal with (IV). Observe that this expression equals

r|k|r−1

(|i|p+|j|q+|k|r+1)1−α
· |k|(|k + ij|+1)r−1

|i|p+|j|q+|k + ij − 1|r+1
.

The first factor is bounded again because α ≤ 1/r. The second factor is smaller than or equal to

(|k + ij|+|ij|)(|k + ij|+1)r−1

|i|p+|j|q+|k + ij − 1|r+1
.

We consider two cases:

• If |ij|≤ |k + ij|, then

(|k + ij|+|ij|)(|k + ij|+1)r−1

|i|p+|j|q+|k + ij − 1|r+1
≤ 2|k + ij|(|k + ij|+1)r−1

|k + ij − 1|r+1
,

which is obviously bounded.
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• If |k + ij|≤ |ij|, then

(|k + ij|+|ij|)(|k + ij|+1)r−1

|i|p+|j|q+|k + ij − 1|r+1
≤ 2|ij|(|ij|+1)r−1

|i|p+|j|q+1
,

which is easily seen to be bounded because 2r ≤ q and 2r ≤ p, which follow from conditions
(ii) and (iii).

Finally, we consider points x ∈ Ii,j,k and y ∈ Ii,j,k′ , whith k′ > k. For simplicity, we assume that
k′ − k ≥ 2. (The case k′ = k + 1 follows from the previous one using property (Derivatives at the
endpoints) just comparing to the right endpoint of Ii,j,k.) Besides, we assume k, k′ to be positive
(the negative situation follows by symmetry). In this case, using [2, (20)], it readily follows that
| logDf(x)− logDf(y)| is smaller than or equal to∣∣∣∣log

|Ii,j,k+ij |
|Ii,j,k|

−log
|Ii,j,k′+ij |
|Ii,j,k′ |

∣∣∣∣+

∣∣∣∣log
|Ii,j,k+ij−1|
|Ii,j,k−1|

−log
|Ii,j,k+ij |
|Ii,j,k|

∣∣∣∣+

∣∣∣∣log
|Ii,j,k′+ij−1|
|Ii,j,k′−1|

−log
|Ii,j,k′+ij |
|Ii,j,k′ |

∣∣∣∣.
The last two terms are easy to estimate, as the indices k, k′ do not mix in none of these. Hence, we
need to estimate the first term; more precisely, we need to find an upper bound for

1

|x− y|α

∣∣∣∣log
|Ii,j,k+ij |
|Ii,j,k|

−log
|Ii,j,k′+ij |
|Ii,j,k′ |

∣∣∣∣ .
Notice that∣∣∣∣log
|Ii,j,k+ij |
|Ii,j,k|

− log
|Ii,j,k′+ij |
|Ii,j,k′ |

∣∣∣∣ =

∣∣∣∣log

(
|i|p + |j|q + |k|r + 1

|i|p + |j|q + |k + ij|r + 1
· |i|

p + |j|q + |k′ + ij|r + 1

|i|p + |j|q + |k′|r + 1

)∣∣∣∣ .
The last expression equals∣∣∣∣log

(
1 +

(|i|p + |j|q + |k|r + 1)(|i|p + |j|q + |k′ + ij|r + 1)− (|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)

)∣∣∣∣ ,
which is smaller than or equal to

M

∣∣∣∣ (|i|p + |j|q + |k|r + 1)(|i|p + |j|q + |k′ + ij|r + 1)− (|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)

∣∣∣∣ ,
where M is a universal constant. By the Mean Value Theorem, the last expression is smaller than
or equal to

M

∣∣∣∣ C

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)

∣∣∣∣ ,
where C equals

C := |i|pr(k′ + |ij|)r−1|ij|+|j|qr(k′ + |ij|)r−1|ij|+|i|pr(k + |ij|)r−1|ij|+|j|qr(k + |ij|)r−1|ij|+
+ r(k′ + |ij|)r−1|ij|+r(k + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|.

Therefore, it is enough to obtain an upper bound for

|i|pr(k′ + |ij|)r−1|ij|+|j|qr(k′ + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|
(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)|x− y|α

. (10)

To estimate this expression, we consider four different cases:

Case 1: k′ ≤ 2k + 1,
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Case 2: k′r ≤ |i|p+|j|q,
Case 3: k′ ≥ 2k + 2, k′r ≥ |i|p+|j|q and kr ≥ |i|p+|j|q,
Case 4: k′ ≥ 2k + 2, k′r ≥ |i|p+|j|q and kr ≤ |i|p+|j|q.

Case 1: Using |x− y|≥ (k′ − k − 1)|Ii,j,k′ |, we see that we need to estimate the value of

|i|pr(k′ + |ij|)r−1|ij|+|j|qr(k′ + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|
(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)1−α(k′ − k − 1)α

.

To do this, we will show that the each of the terms

(I)
|i|pr(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)1−α
,

(II)
|j|qr(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)1−α
,

(III)
|k|rr(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)1−α
,

(IV )
|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)1−α

is bounded.
Notice that the terms (I) and (II) are smaller than or equal to

r(k′ + |ij|)r−1|ij|
(|i|p + |j|q + |k′|r + 1)1−α

= r
(k′ + |ij|)r−1

(|i|p + |j|q + |k′|r + 1)
1−α
2

|ij|
(|i|p + |j|q + |k′|r + 1)

1−α
2

. (11)

In the last expression, the second factor is estimated by

|ij|
(|i|p + |j|q + |k′|r + 1)

1−α
2

≤ |ij|
(|i|p + |j|q + 1)

1−α
2

,

which is bounded because 4 ≤ p(1 − α) and 4 ≤ q(1 − α) (conditions (v) and (vi)). To check that
the first factor

(k′ + |ij|)r−1

(|i|p + |j|q + |k′|r + 1)
1−α
2

is bounded as well, notice that:

• If k′ ≤ |ij|, this factor is smaller than or equal to

(2|ij|)r−1

(|i|p + |j|q + 1)
1−α
2

,

which is bounded because r < 2, 4 ≤ p(1− α) and 4 ≤ q(1− α) (conditions (i), (v) and (vi)).

• If |ij|≤ k′, this factor is smaller than or equal to

(2k′)r−1

(|k′|r + 1)
1−α
2

,

which is bounded because α ≤ 2/r − 1 (condition (iv)).

14



Next, we show that the expressions (III) and (IV) above are bounded. To do this, notice that
from the previous estimates, we know that the expression

(k + |ij|)r−1|ij|
(|i|p + |j|q + |k|r + 1)1−α

is bounded as r < 2, 4 ≤ p(1− α), 4 ≤ q(1− α) and α ≤ 2/r − 1 (conditions (i), (v), (vi) and (iv)).
Therefore, it suffices to estimate the factors

|k|r

|i|p + |j|q + |k + ij|r + 1
and

|k′|r

|i|p + |j|q + |k + ij|r + 1
. (12)

The first factor is analyzed in two cases:

• If |k + ij|≥ |ij|, then
|k|r

|i|p + |j|q + |k + ij|r + 1
≤ (2|k + ij|)r

|k + ij|r + 1
,

which is obviously bounded.

• If |ij|≥ |k + ij|, then
|k|r

|i|p + |j|q + |k + ij|r + 1
≤ (2|ij|)r

|i|p + |j|q + 1
,

which is bounded because 2r ≤ p and 2r ≤ q (these follow from conditions (ii) and (iii)).

For the second factor, we have

|k′|r

|i|p + |j|q + |k + ij|r + 1
≤ |2k + 1|r

|i|p + |j|q + |k + ij|r + 1
,

which is bounded since 2r ≤ p and 2r ≤ q (conditions (ii) and (iii)).

Case 2: This is similar to Case 1, except for that the very last expression |k′|r
|i|p+|j|q+|k+ij|r+1 above is

now estimated by
|k′|r

|i|p + |j|q + |k + ij|r + 1
≤ |i|p + |j|q

|i|p + |j|q + |k + ij|r + 1
,

which is obviously bounded.

Case 3: In this case, we have the estimate

|x− y|≥ M

(k + 1)r−1
,

where M is a universal constant (see [2, §3.3, item (c)]). Thus, in order to estimate (10), it is enough
to estimate the expression

(k + 1)α(r−1)
(|i|p+|j|q)r(k′ + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
.

To do this, we will separately deal with the expressions below:

(I) (k + 1)α(r−1)
(|i|p+|j|q)r(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
,
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(II) (k + 1)α(r−1)
|k|rr(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
,

(III) (k + 1)α(r−1)
|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
.

For expression (I), it is enough to estimate

(k′ + |ij|)r−1|ij|kα(r−1)

(|i|p + |j|q + |k′|r + 1)
=

(k′ + |ij|)r−1|ij|
(|i|p + |j|q + |k′|r + 1)1−α

· kα(r−1)

(|i|p + |j|q + |k′|r + 1)α
.

The second factor above is obviously bounded. For the first one, notice that it coincides with (11),
and this is bounded because of the corresponding estimate in Case 1 (this estimate still applies).

For expression (II), it is enough to obtain an upper bound for

|k|r(k′ + |ij|)r−1|ij|kα(r−1)

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
,

which may be rewritten as

|k|r

(|i|p + |j|q + |k + ij|r + 1)
· kα(r−1)

(|i|p + |j|q + |k′|r + 1)α
· (k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k′|r + 1)1−α
.

To do this, notice that the second factor is obviously bounded, and the third and the first one were
already considered (see (11) and (12), respectively), and the corresponding estimates still apply.

Finally, for expression (III), it suffices to provide an upper bound for

|k′|r(k + |ij|)r−1|ij|kα(r−1)

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
,

which reduces to estimate the expression

(k + |ij|)r−1|ij|kα(r−1)

|i|p + |j|q + |k + ij|r + 1
.

However, this equals

|i|p + |j|q + |k|r + 1

|i|p + |j|q + |k + ij|r + 1
· (k + |ij|)r−1|ij|

(|i|p + |j|q + |k|r + 1)1−α
· kα(r−1)

(|i|p + |j|q + |k|r + 1)α
,

and these expressions were all considered when dealing with expression (II).

Case 4: In this case, we have the estimate

|x− y|≥ k′ − k − 1

(k + 1 + S1/r)r−1(k′ + S1/r)
,

where S := 1 + |i|p+|j|q (see [2, §3.3, item (d)]). Thus, in order to estimate (10), we need to obtain
an upper bound for the expression

(k + 1 + S1/r)α(r−1)(k′ + S1/r)α

(k′ − k − 1)α
· (|i|p+|j|q)r(k′ + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
.

To do this, first notice that the term
(k′ + S1/r)α

(k′ − k − 1)α
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is bounded, as it readily follows from the hypothesis of this case. Hence, we need to estimate the
expression

(k + 1 + S1/r)α(r−1)
(|i|p+|j|q)r(k′ + |ij|)r−1|ij|+|k|rr(k′ + |ij|)r−1|ij|+|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
.

For this, we will separately consider the terms

(I) (k + 1 + S1/r)α(r−1)
(|i|p+|j|q+|k|r)r(k′ + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
,

(II) (k + 1 + S1/r)α(r−1)
|k′|rr(k + |ij|)r−1|ij|

(|i|p + |j|q + |k + ij|r + 1)(|i|p + |j|q + |k′|r + 1)
.

For (I), the factor
|i|p+|j|q+|k|r

|i|p + |j|q + |k + ij|r + 1

is uniformly bounded because 2r ≤ p and 2r ≤ q (these follow from conditions (iii) and (iv)). Thus,
we need to control the factor

(k′ + |ij|)r−1|ij|(k + 1 + S1/r)α(r−1)

(|i|p + |j|q + |k′|r + 1)
=

(k′ + |ij|)r−1|ij|
(|i|p + |j|q + |k′|r + 1)1−α

· (k + 1 + S1/r)α(r−1)

(|i|p + |j|q + |k′|r + 1)α
.

From the previous computations (see (11)), we know that

(k′ + |ij|)r−1|ij|
(|i|p + |j|q + |k′|r + 1)1−α

is bounded. Moreover, due to the conditions 1 + kr ≤ S ≤ 1 + k′r (which follow from the hypothesis
of this case), we have

(k + 1 + S1/r)α(r−1)

(|i|p + |j|q + |k′|r + 1)α
≤ (S1/r + 1 + S1/r)α(r−1)

Sα
,

and the right-hand expression is obviously bounded.
Finally, to deal with expression (II), it suffices to estimate the expression

(k + 1 + S1/r)α(r−1)(k + |ij|)r−1|ij|
|i|p + |j|q + |k + ij|r + 1

.

However, this may be rewritten as the product

(k + 1 + S1/r)α(r−1)

(|i|p + |j|q + |k|r + 1)α
· (k + |ij|)r−1|ij|

(|i|p + |j|q + |k|r + 1)1−α
· |i|p + |j|q + |k|r + 1

|i|p + |j|q + |k + ij|r + 1
,

and as in the case of (I), it is easy to see that each factor therein is bounded.
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