
A Livšic type theorem for germs of analytic diffeomorphisms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 Nonlinearity 26 297

(http://iopscience.iop.org/0951-7715/26/1/297)

Download details:

IP Address: 132.68.232.22

The article was downloaded on 07/02/2013 at 23:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/26/1
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING NONLINEARITY

Nonlinearity 26 (2013) 297–305 doi:10.1088/0951-7715/26/1/297
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Abstract
We deal with the problem of the validity of the Livšic theorem for cocycles
of diffeomorphisms over a hyperbolic dynamics that satisfy the periodic orbit
condition. We give a result in the positive direction for cocycles of germs of
analytic diffeomorphisms at the origin.

Mathematics Subject Classification: 37d99

1. Introduction

Given a map (dynamical system) T : X → X over a compact metric space X and a (topological)
group G, we consider a continuous G-valued cocycle A : N × X → G, that is, a continuous
map taking values in G and satisfying the cocycle relation

A(n + m, x) = A(n, T mx)A(m, x)

for every m, n in N and every x ∈ X. This cocycle is completely determined by the continuous
function A(·) := A(1, ·) : X → G, and the cocycle relation yields

A(n, x) = A(T n−1x)A(T n−2x) · · · A(x)

for every n � 1. A natural problem consists in determining sufficient conditions so that a given
cocycle is conjugated to a cocycle taking values in a ‘small’ subgroup of G. For the case of
the trivial subgroup {eG}, the existence of the desired conjugacy is equivalent to the existence
of a continuous function B : X → G such that

A(x) = B(T x)B(x)−1 for all x ∈ X. (1)
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Whenever this cohomological equation associated to the cocycle A has a solution B, we say
that A is a coboundary. The simplest obstruction for the existence of B is the periodic orbit
obstruction: if p ∈ X and n ∈ N satisfy T np = p, then

A(n, p) =
n−1∏
i=0

A(T ix) =
n−1∏
i=0

B(T i+1x)B(T ix)−1 = B(T np)B(p)−1 = eG . (2)

The Livšic problem consists in determining whether the condition (2) is not only necessary
but also sufficient for A being a coboundary. This terminology originates in the seminal work
of Livšic [4], who proved that this is the case whenever G is Abelian, A is Hölder-continuous
and T is a topologically transitive hyperbolic diffeomorphism. Since then, many extensions of
this classical result have been proposed. Perhaps the most relevant is Kalinin’s recent version
for G = GL(d, C). In this paper, we address the Livšic problem for Hölder-continuous
cocycles taking values in the group of germs of analytic diffeomorphisms. In the context of
general diffeomorphisms, the answer to the Livšic problem is unclear, despite several results
pointing in the positive direction whenever a certain localization property is satisfied. (See,
for example, [2].)

To state our result, we denote by Germd the group of germs of local bi-holomorphisms of
the complex space C

d fixing the origin. This may be identified to the group of holomorphic
maps F(Z) = A1Z + A2Z

2 + . . . having positive convergence radius, with A1 ∈ GL(d, C)

(see section 1.2 for the details).

Main theorem. Let T : X → X be a topologically transitive homeomorphism of a
compact metric space X satisfying the closing property (see section 1.1 for the details). Let
F : X → Germd be a Hölder-continuous function/cocycle (see section 1.2 for a discussion
about continuity). If F satisfies the condition (2), then there exists a Hölder-continuous function
H : X → Germd such that for all x ∈ X,

F(x) = H(T x) ◦ H(x)−1. (3)

This theorem should be compared with [5], where the second-named author shows a
KAM-type result for Germd -valued cocycles over a minimal torus translation.

1.1. A reminder on Livšic’s theorem for complex valued cocycles

Let X be a compact metric space with normalized diameter (i.e., diam(X) = 1). We say that
a function f : X → C is (C, α)-Hölder-continuous for C > 0 and α ∈ (0, 1] if for every pair
of points x, y in X,

|f (x) − f (y)| � C distX(x, y)α. (4)

In the sequel, we will denote by [f ]α the smallest constant C for which f is (C, α)-Hölder-
continuous. The next two results are straightforward.

Lemma 1. If f vanishes at some point of X, then ‖f ‖ := supx∈X |f (x)| � [f ]α. �

Lemma 2. Let f, g : X → C be two α-Hölder-continuous functions. Then the functions f +g

and fg are α-Hölder-continuous, and

(1) [f + g]α � [f ]α + [g]α .
(2) [fg]α � [f ]α‖g‖ + [g]α‖f ‖. �
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Let T : X → X be a homeomorphism and let x, y be points of X. We say that the orbit
segments x, T x, . . . , T kx and y, T y, . . . , T ky are exponentially δ-close with exponent λ > 0
if for every j = 0, . . . , k,

distX(T jx, T jy) � δe−λ min{j,k−j}.

We say that T satisfies the closing property if there exist c, λ, δ0 > 0 such that for every
x ∈ X and k ∈ N so that distX(x, T kx) < δ0, there exists a point p ∈ X with T kp = p

so that letting δ := c distX(x, T kx), the orbit segments x, T x, . . . , T kx and p, Tp, . . . , T kp

are exponentially δ-close with exponent λ and there exists a point y ∈ X such that for every
j = 0, . . . , k,

distX(T jp, T jy) � δe−λj and distX(T jy, T jx) � δe−λ(n−j).

Important examples of maps satisfying the closing property are hyperbolic diffeomorphisms
of compact manifolds.

In this work, we will use two versions of the Livšic result. The first of these (see theorem 3)
corresponds to the original Livšic theorem for complex valued cocycles. This theorem will be
used as the main ingredient for an iterative scheme. In this procedure, we will require certain
good estimates for the solutions of cohomological equations (see corollary 4). For this reason,
in the next paragraph, we review the proof of the Livšic theorem and we record some key
estimates. The second version (extension) of the Livšic result we will use (see theorem 5)
corresponds to a recent and remarkable theorem by B Kalinin, who proves the Livšic theorem
for matrix-valued cocycles (satisfying no localization property).

Theorem 3 (Livšic, see [4]). Let T : X → X be a topologically transitive homeomorphism
of a compact metric space X satisfying the closing property. Let ψ : X → C be an α-Hölder-
continuous function for which the condition (2) holds, that is, for every point p ∈ X and k � 1
such that T kp = p, one has

∑k−1
j=0 ψ(T jp) = 0. Then there exists an α-Hölder-continuous

function φ : X → C that is a solution of the cohomological equation

φ ◦ T − φ = ψ.

Proof. Let x0 ∈ X be such that {T nx0}n∈N = X. We define φ by letting φ(x0) := 0 and
φ(T nx0) := ∑n−1

j=0 ψ(T jx0). We next check that φ is α-Hölder-continuous on {T nx0}n∈N. Let
n > m. There are two cases to consider:

• Assume that distX(T mx0, T
nx0) < δ0. Then there exists a point p ∈ X satisfying

T n−mp = p and such that for every j = 0, . . . , n − m,

distX(T j (T mx0), T
jp) � c distX(T nx0, T

mx0)e
−λ min{j,n−m−j}.

This yields

|φ(T nx0) − φ(T mx0)| =
∣∣∣∣∣∣
n−m−1∑

j=0

ψ(T m+j x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−m−1∑

j=0

(
ψ(T m+j x0) − ψ(T jp)

)
+

n−m−1∑
j=0

ψ(T jp)

∣∣∣∣∣∣
�

n−m−1∑
j=0

∣∣ψ(T m+j x0) − ψ(T jp)
∣∣
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�
n−m−1∑

j=0

[ψ]α distX(T m+j x0, T
jp)α

�
n−m−1∑

j=0

cα[ψ]α distX(T nx0, T
mx0)

αe−λα min{j,n−m−j}

� 2cα[ψ]α
1 − e−λα

distX(T nx0, T
mx0)

α.

• Assume that distX(T nx0, T
mx0) � δ0. Since x0 has dense orbit and X is compact, there

exists N ∈ N, depending only on X, T , and δ0, such that {x0, T x0, . . . , T
Nx0} is a δ0-dense

set in X. For n − m � N , one easily shows that

|φ(T nx0) − φ(T mx0)| � N‖ψ‖.
For n − m > N , there exist r, s in {0, 1, . . . , N} such that distX(T sx0, T

nx0) � δ0 and
distX(T rx0, T

mx0) � δ0. Using the preceding case, this yields

|φ(T nx0) − φ(T mx0)| � |φ(T nx0) − φ(T sx0)| + |φ(T mx0) − φ(T rx0)| + |φ(T sx0)

− φ(T rx0)|
� 4[ψ]αcα

1 − e−λα
δα

0 + N‖ψ‖

�
(

4[ψ]αcα

1 − e−λα
+

N‖ψ‖
δα

0

)
distX(T nx0, T

mx0)
α. �

A careful reading of the proof above yields useful estimates enclosed in the following.

Corollary 4. The solution φ to the cohomological equation is α-Hölder continuous, and there
exists K depending only on T , X, and α such that [φ]α � K([ψ]α + ‖ψ‖). �

Theorem 5 (Kalinin, see [3]). Let T be a topologically transitive homeomorphism of a
compact metric space X satisfying the closing property. Let A : X → GL(d, C) be an
α-Hölder function for which the condition (2) holds. Then there exists an α-Hölder function
B : X → GL(d, C) such that for all x ∈ X,

A(x) = B(T x)B(x)−1.

1.2. The group Germd

For d � 1, we introduce the following notation:

• j := (j1, . . . , jd) is a point of non-negative integer entries, with ji � 0 for every
1 � i � d .

• |j| := j1 + . . . + jd .
• j � k if ji � ki for every 1 � i � d.
• j ≺ k if j � k and ji∗ < ki∗ for some i∗.
• Z = (z1, z2, . . . , zd) is a point in C

d .
• Zj := z

j1
1 z

j2
2 · · · zjd

d .

Then we can define a formal power series on C
d as F(Z) := (F1(Z), F2(Z), . . . , Fd(Z)),

where each Fi(Z) has the form

Fi(Z) =
∑
|j|�0

t ijZ
j
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for some coefficients t ij ∈ C. This formal power series becomes an analytic map if there exists

R > 0 such that lim supj |t ij |
1
|j| � 1

R
for every i. Indeed, in this case, each Fi is a convergent

series on D(0, R)d (this is the set of points Z = (z1, . . . , zd) such that |zs | < R holds for
every s).

Let H(d, R) be the set of continuous functions F : D(0, R)d → C
d that may be written

as a convergent power series on D(0, R)d and satisfy F ′(0)∈GL(d, C). This space is a subset
of a natural complex vector space which can be endowed with the inner product

〈F, G〉R :=
∑

i

(∫
∂D(0,R)d

FiGi dZ

)
.

The L2-norm of an element F ∈H(d, R) of the form Fi(Z) = ∑
|j|�0 t ijZ

j is

‖F‖2,R := 〈F, F 〉1/2
R =


∑

i

∑
|j|�1

|t ij |2R2|j|




1/2

.

We let H0(d, R) be the subset of H(d, R) formed by those F satisfying F(0) = 0, and we
define the set of local holomorphic diffeomorphisms of C

d as

Gd :=
⋃
R>0

H0(d, R).

On this set, we introduce the following equivalence relation: we say that F, G in Gd are
equivalent if there exists a neighbourhood of the origin on which F and G coincide. With
this identification, the set Gd becomes a group, that we call the group of germs of analytic
diffeomorphisms of C

d and we denote by Germd .
Although we will not worry about providing a precise topology for Germd , we will

certainly need to consider maps from X to Germd that are ‘continuous’ in a precise sense.
Since X is compact, any reasonable definition should lead to functions that factor throughout
an space H0(d, R) for some positive R. Accordingly, given C > 0, α ∈ (0, 1], and R > 0,
a map � : X → H0(d, R) will be said to be (C, α, R)-Hölder-continuous if �(x) belongs to
H0(d, R) for every x ∈ X, and for every pair of points x, y in X,

‖�(x) − �(y)‖2,R � C distX(x, y)α.

In terms of the coefficients of the power series, this condition reads as follows:

Lemma 6. If � : X → H0(d, R) is (C, α, R)-Hölder and writes as

�i(x)(Z) =
∑
|j|>0

t ij(x)Zj,

then each coefficient t ij : X → C is a
(

C
R|j| , α

)
-Hölder-continuous function.

Proof. The Hölder condition for � yields
∑

i

∑
|j|�1

|t ij(x) − t ij(y)|2R2|j|




1/2

� C distX(x, y)α,

which implies that

|t ij(x) − t ij(y)|2 � C2

R2|j| distX(x, y)2α. �
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In an opposite direction, given a list {t ij : X → C, j � 0, 1 � i � d} of continuous
functions, we are interested in finding conditions that ensure that F := (F1, . . . , Fd), formally
defined by Fi(x)(Z) := ∑

j t ij(x)Zj , represents a convergent power series lying in H0(d, R)

for some R > 0.

Lemma 7. Assume that each function t ij is a ( C
R|j | , α)-Hölder-continuous function for some

positive constants C, R. Assume also that each t ij vanishes at some point of X. Then
for all δ<1, the formal power series Fi is convergent on D(0, R)d , and x �→ F(x) =
(F1(x), . . . , Fd(x)) is a (O( δ

1−δ
)1/2, α)-Hölder continuous map from X to H0(d, δR).

Proof. Since each t ij vanishes at some point of X, lemma 1 gives ‖t ij‖ � C
R|j| for every i, j.

This implies that each Fi is a convergent power series on D(0, R)d . Moreover, for all x, y in X,

‖F(x) − F(y)‖2
2,δR =

∑
i

∑
j

|t ij(x) − t ij(y)|2(δR)2|j|

�
∑

i

∑
j

C2 distX(x, y)2αδ2|j|

= dC2 distX(x, y)2α

∞∑
s=1

∑
|j|=s

δ2s

= dC2 distX(x, y)2α

∞∑
s=1

(s + d − 1)!

s!(d − 1)!
δ2s

= dC2O

(
δ

1 − δ

)
distX(x, y)2α. �

The Faà di Bruno formula. We will need to consider compositions of power series in several
complex variables. The following is a simplified formulation of the multivariate version by
Constantine and Savits [1] of the well known Faà di Bruno formula:

Theorem 8 (see [1]). Let A(Z) = ∑
|j|�1 ajZ

j and Bi(Z) = ∑
|j|�1 bi

jZ
j , 1 � i � d, be

formal power series in d variables. Then the power series

C(Z) = A (B1(Z), B2(Z), . . . , Bd(Z)) =
∑
|j|�1

cjZ
j

has coefficients

cj∗ =
∑
|j|=1

ajb
j
j∗ +

∑
1<|j|, j�j∗

ajP(j∗, j){B}, (5)

where P(j∗, j){B} is a polynomial in the variables {bi

j̃
}1�i�d

j̃<j∗
that is homogeneous of degree

|j| and has positive integer coefficients.

The Faà di Bruno formula is actually much more precise and requires more complex
notation. For instance, in the case d = 1, one has

P(j∗, j){B} =
∑

r1+...+rj =j∗

Br1 · · · Brj
.
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A generating function. Let us define J :D(0, 1)d → C
d by the convergent power series

Ji(Z) = zi −
∑
|j|>1

Zj .

Since DJ(0) = idCd , there exists an analytic map G defined in a neighbourhood of the origin
in C

d such that G(0) = 0 and

J ◦ G(Z) = Z for every Z in that neighbourhood. (6)

In terms of power series, one can write

Gi(Z) = zi +
∑
|j|>1

gi
jZ

j,

where the coefficients verify |gi
j | < K |j|−1 for some K > 0 and every |j| � 1. Moreover,

these coefficients satisfy a fundamental recurrence relation. Indeed, using J ◦ G(Z) = Z and
the Faà di Bruno formula (5), one obtains

0 = gi
j∗ −

∑
1<|j|, j�j∗

P(j∗, j){G}. (7)

Recall that P(j∗, j){G} depends only on the values of gs

j̃
for j̃ ≺ j∗ and every s. Hence, one

can recursively compute gi
j∗ in terms of the previously defined gs

j̃
.

For any S > 0, we consider JS : D(0, S−1)d → C
d defined by JS(Z) := 1

S
J (SZ). When

solving the equation JS ◦ GS(Z) = Z, one gets a map GS = (GS,1, . . . , GS,d), where each
GS,i(Z) has the form GS,i(Z) = zi +

∑
|j|>1 gi

S,jZ
j for certain coefficients gi

S,j satisfying

gi
S,j∗ =

∑
1<|j|, j�j∗

S|j|−P(j∗, j){GS}. (8)

Lemma 9. Each coefficient gi
S,j is a positive real number. Moreover, there exists a constant

R = R(S) > 0 such that gi
S,j � R|j|−1 for every j. �

1.3. Proof of the main theorem

A first reduction. Let F(x)(Z) = A1(x)Z + (
∑

|j|>1 ai
j(x)Zj)1�i�d be the power series

expansion of the cocycle viewed as a (C, α, R)-Hölder-continuous function � : X →
H0(d, R). The map x �→ A1(x) ∈ GL(d, C) is an α-Hölder-continuous function. Since
the condition (2) holds for F , we must have

n−1∏
j=0

A1(T
jp) = ∂

∂Z
F(T n−1p) ◦ . . . ◦ F(p)

∣∣∣∣
Z=0

= idCd

for every p ∈ X and n ∈ N such that T np = p. In other words, the GL(d, C)-valued cocycle
A1 satisfies the condition (2). By Kalinin’s version of the Livšic theorem, there exists an
α-Hölder-continuous function H1 : X → GL(d, C) such that A1(x) = H1(T x)H1(x)−1 for
all x ∈ X. Consequently, the Germd -valued cocycle H1(x)(Z) := H1(x)Z conjugates F to a
cocycle of the form

(x, Z) �−→

T x, Z +


∑

|j|>1

ai
j(x)Zj




1�i�d


 .

Thus, we can assume that A1(x) = idCd for all x ∈ X.
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An iterative procedure. We look for a map H : X → Germd solving the cohomological
equation (3) and having the form H(x)(Z) = Z + (

∑
|j|>1 hi

j(x)Zj)1�i�d . Notice that this
equation may be written as F(x) ◦ H(x) = H(T x). Applying the Faà di Bruno formula (5)
to the left-side expression, one concludes that each coefficient hi

j can be defined recursively
as the solution of a cohomological equation for C-valued data:

(eci
j∗) hi

j∗(T x) − hi
j∗(x) =

∑
1<|j|, j�j∗

ai
j(x)P (j∗, j){H }(x).

A necessary condition for the existence of the coefficient hi
j∗ is that the condition (2) holds for

the function

Ri
j∗ :=

∑
1<|j|, j�j∗

ai
jP(j∗, j){H }. (9)

Lemma 10. Each Ri
j∗ , with i, |j∗| � 1, is a well-defined α-Hölder-continuous function for

which the condition (2) holds. As a consequence, given any x0 ∈ X, the equation (eci
j∗) has

an α-Hölder-continuous solution hi
j∗ vanishing at x0.

Proof. Suppose that the conclusion of the lemma holds for every j such that |j| < k, and let
us consider the case where |j| = k. Using the explicit formula (9), lemma 2 shows that the
function Ri

j∗ is α-Hölder-continuous. Consider the continuous Germd -valued function

H<k : x �→ Z +


∑

|j|<k

hi
j(x)Zj




1�i�d

.

An easy computation shows that F̃ (x) := H<k(T x) ◦ F(x) ◦ H<k(x)−1 has the form

F̃ (x)(Z) = Z +


∑

|j|=k

Ri
j(x)Zj +

∑
|j|>k

ãi
j(x)Zj




1�i�d

for some Hölder-continuous functions ãi
j : X → C. Moreover, for any x ∈ X and m ∈ N,

one has

F̃ (T m−1x) ◦ . . . ◦ F̃ (x)(Z) = Z +


∑

|j|=k

(
m−1∑
v=0

Ri
j(T

vx)

)
Zj + O(|Z|k+1)




1�i�d

.

Since F̃ is conjugated to F , the condition (2) holds for F̃ . By the previous equality, this implies
that for all p ∈ X and n ∈ N such that T np = p, one has

∑n−1
v=0 Ri

j(T
vx) = 0. Therefore, the

condition (2) holds for Ri
j , and we can apply the Livsic’s theorem to establish the existence of

an α-Hölder-continuous solution to (eci
j∗). Finally, by adding a constant if necessary, we may

assume that this solution vanishes at x0. �
To prove that the (up to now) formal map H is a genuine local diffeomorphism (that

is, each formal power series Z �→ zi +
∑

|j|>1 hi
j(x)Zj is convergent in a certain (uniform)

neighbourhood of the origin), we will need to estimate the growth of the α-Hölder constant of
the coefficients hi

j . Indeed, if we show that this growth is at most exponential, then lemma 7
will apply, thus concluding the proof of the main theorem. To get the desired control, we
will use the majorant series method introduced by Siegel for his work [6] on the linearization
theorem for holomorphic germs with Diophantine rotation number (see also [7] for the higher-
dimensional case).
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Lemma 11. There exists S > 0 such that

[hi
j]α � gi

S,j

for every j, i, where hi
S,j is defined as in (8). Consequently, ‖hi

j‖ grows at most exponentially.

Proof. Since F takes values on some H0(d, R) and is an α-Hölder function, there exists κ > 0
such that

‖ai
j‖ � κ |j| and [ai

j]α � κ |j|.

Assume that [hi
j]α � gi

S,j for every j � j∗. Since hi
j vanishes at x0 (except for |j| = 1, for

which hi
j ≡ 1), we also have ‖hi

j‖ � gi
S,j for every j � j∗. Moreover, since P(j∗, j){H } is

an homogeneous polynomial in {hs

j̃
}1�s�d

j̃<j∗
with positive coefficients,

‖P(j∗, j){H }‖ � P(j∗, j){‖H‖} � P(j∗, j){GS}.
Except for |j| = 1 (for which hi

j ≡ 1), every hi
j vanishes at x0. Therefore, by lemma 2,

[P(j∗, j){H }]α � 2|j|−1P(j∗, j){GS}.
The fundamental estimate of corollary 4 then yields

[hi
j∗ ]α � K





∑

j�j∗

ai
jP(j∗, j){H }




α

+

∥∥∥∥∥∥
∑
j�j∗

ai
jP(j∗, j){H }

∥∥∥∥∥∥



� K


∑

j�j∗

‖ai
j‖[P(j∗,j){H }]α +

∑
j�j∗

[ai
j]α‖P(j∗,j){H }‖ +

∑
j�j∗

‖ai
j‖‖P(j∗, j){H }‖




�
∑
j�j∗

K
(
(2κ)|j| + 2κ |j|) P(j∗, j){GS}

< gi
S,j∗ ,

where the last inequality holds by taking S � 2Kκ . �
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