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Abstract. We give a general version of the Birkhoff ergodic theorem for functions taking
values in non-positively curved spaces. In this setting, the notion of a Birkhoff sum is
replaced by that of a barycenter along the orbits. The construction of an appropriate
barycenter map is the core of this note. As a byproduct of our construction, we prove
a fixed point theorem for actions by isometries on a Buseman space.

1. Introduction
The extension of classical ergodic theorems to a geometric—non-positively curved—
setting has been one of the most fascinating developments in ergodic theory in recent years;
see [6] for a nice survey containing most of the relevant results for functions (cocycles)
taking values in isometry groups.

In a different though related direction, Es-Sahib and Heinich proved in [4] an ergodic
type theorem for L1 independent and identically distributed (i.i.d.) random variables taking
values in a non-positively curved space. An analogous result for L2 i.i.d. random variables
was given by Sturm in [7]. Recently, Austin proved a nice extension of Sturm’s result to
arbitrary measure-preserving actions of amenable groups (see [1]). Unfortunately, Austin’s
L2 setting is not the most appropriate one in view of the fact that the most powerful
framework of the ergodic theorem is that of L1 spaces. In this work, we prove a general
ergodic theorem for L1 functions taking values in non-positively curved spaces, where the
notion of Birkhoff sums is replaced by that of barycenters along the orbits.

Let us begin by recalling a classical construction. Given a complete CAT(0)-space
(X, d), we consider the space P2(X) of probability measures with finite second moment,
that is, ∫

X
d(x, y)2 dµ(y) <∞
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(this condition does not depend on the point x ∈ X ). Following Cartan (see, for
instance, [5]), to each µ ∈ P2(X) one may associate a barycenter bar(µ), namely the
unique point that minimizes the function

x→
∫

X
d(x, y)2 dµ(y).

A crucial property of bar : P2(X)→ X is that it is 1-Lipschitz for the 2-Wasserstein
metric [7]:

d(bar(µ1), bar(µ2))≤W2(µ1, µ2) := inf
ν∈(µ1|µ2)

√∫
X×X

d(x, y)2 dν(x, y),

where (µ1|µ2) denotes the set of all probability measures ν on X × X that project into
µ1 and µ2 on the first and the second factor, respectively (see [8] for more details on this
metric).

The first task of this work was to introduce an analogous notion for the space P1(X) of
probability measures with finite first moment:∫

X
d(x, y) dµ(y) <∞.

It was after we developed a notion of barycenter adapted to our needs that we discovered
the equivalent construction of [4]. We decided to include our approach here because it is
more elementary in that, unlike [4], it does not rely on deep probabilistic results. Although
this makes our computations a little more involved, it has the advantage of allowing us
to avoid the (finite) local compactness hypothesis of [4] for the underlying space, thus
solving a problem formulated in [7, Example 6.5]. Summarizing, let (X, d) be a complete
metric space with non-positive curvature in the sense of Buseman (which, for convenience,
we call a Buseman space). Assuming that X is separable, in §2 we construct a map
bar? : P1(X)→ X that is 1-Lipschitz for the 1-Wasserstein metric:

d(bar?(µ1), bar?(µ2))≤W1(µ1, µ2) := inf
ν∈(µ1|µ2)

∫
X×X

d(x, y) dν(x, y).

By elementary reasoning, this also applies to any separable Banach space, where geodesics
are understood as being segments of lines.

The map constructed above is equivariant with respect to the natural action of
isometries. At the end of §2, we give an application of this fact, namely, we prove that
every compact group of isometries of a Buseman space has a fixed point. The novelty here
is that we do not assume any hypothesis of strict convexity (with such a hypothesis, the
result is elementary and well known).

We next describe the goal of this work. Given an amenable group G with a measure-
preserving action T on a probability space (�, P), let (Fn) be a tempered Følner sequence
in G, that is, a Følner sequence for which there exists C > 0 such that for all n ∈ N,

mG

(⋃
k<n

F−1
k Fn

)
≤ CmG(Fn),
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where mG denotes the left Haar measure on X . Let ϕ :�→ X be a measurable function
lying in L1(P, X), that is, such that for some (equivalently, all) x ∈ X ,∫

�

d(ϕ(ω), x) d P(ω) <∞.

Notice that L1(P, X) becomes a metric space when endowed with the distance

d1(ϕ, ψ) :=

√∫
�

d(ϕ(ω), ψ(ω)) d P(ω).

MAIN THEOREM. With the notation above, assume that X is either a separable Banach
space or a separable Buseman space. Then

ω 7→ bar?
(

1
mG(Fn)

∫
Fn

δϕ(T g
ω) dmG(g)

)
is a sequence of maps that converges pointwise and in L1(P, X) to a T -invariant function
from � to X.

For Banach spaces, the barycenter of a measure (1/m)(δx1 + · · · + δxm ) is just the Dirac
measure concentrated at the point (1/m)(x1 + · · · + xm). In particular, when G ∼ Z,
X = R and Fn = {0, . . . , n − 1}, the theorem reduces to the classical (invertible) Birkhoff
ergodic theorem for ϕ ∈ L1(P, R).

The proof of our main theorem uses the general strategy of [1], that is, the contractivity
properties of the barycenter maps transform the desired convergence into that of suitable
sequences of real-valued functions to which Lindenstrauss’s pointwise ergodic theorem [3]
applies. Recall that in the setting of [1], the probability measure lies in P2(X) and one
considers functions ϕ :�→ X lying in the space L2(P, X), that is, such that for some
(equivalently, all) x ∈ X , ∫

�

d(ϕ(ω), x)2 d P(ω) <∞.

This space may be naturally endowed with the distance

d2(ϕ, ψ) :=

∫
�

d(ϕ(ω), ψ(ω))2 d P(ω).

Austin’s theorem then asserts that for every ϕ ∈ L2(P, X), the sequence of maps

ω 7→ bar
(

1
mG(Fn)

∫
Fn

δϕ(T gω) dmG(g)

)
(1)

converges pointwise and in L2(P, X) to a T -invariant function from � to X .
Quite interestingly, Austin’s theorem is not a consequence of our main theorem.

Indeed, although—as in the classical case—our theorem extends to an L p version by a
straightforward and well-known argument, the barycenters bar and bar? may differ, even
for very nice spaces; see Remark 2.3. Despite this, the map bar is also 1-Lipschitz for the
1-Wasserstein metric; see [7, Proposition 4.3]. Using the methods of §3, this allows us to
show that the convergence of the sequence of maps (1) actually holds in L1(P, X). We
point out that this still holds for probability measures in P1(X) for a clever modification
of Cartan’s barycenter (see [7, Proposition 4.3]).
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2. The barycenter map
For a Banach space X , a natural definition of the barycenter of a measure µ ∈ P1(X) is

bar?(µ) :=
∫

X
x dµ(x).

Notice that given µ1, µ2 in P1(X), for each ν ∈ (µ1|µ2) we have∫
X×X
‖x − y‖ dν(x, y) ≥

∥∥∥∥∫
X×X

(x − y) dν(x, y)

∥∥∥∥
=

∥∥∥∥∫
X×X

x dν(x, y)−
∫

X×X
y dν(x, y)

∥∥∥∥
=

∥∥∥∥∫
X

x d(π1ν)(x)−
∫

X
y d(π2ν)(y)

∥∥∥∥
= ‖bar?(µ1)− bar?(µ2)‖.

As a consequence,

‖bar?(µ1)− bar?(µ2)‖ ≤W1(µ1, µ2).

A definition with an analogous property for non-positively curved spaces is much more
subtle. In what follows, X will denote a Buseman space (separability will be needed later).
Recall that this means that X is geodesic and the distance function along geodesics is
convex. Equivalently, given any two pairs of points x, y and x ′, y′, their corresponding
(unique) midpoints m, m′ satisfy

d(m, m′)≤
d(x, x ′)

2
+

d(y, y′)

2
. (2)

This property allows us to define a barycenter barn(x1, . . . , xn) of any finite family
(x1, . . . , xn) of (not necessarily distinct) points as follows. For n = 1, we let bar1(x) := x .
For n = 2, we let bar2(x, y) be the midpoint between x and y. Now, assuming that
the barycenters barn(·, . . . , ·) of all families of n points have been defined, we define
barn+1(x1, . . . , xn, xn+1) as follows: starting with (x1, . . . , xn+1)=: (x

(0)
1 , . . . , x (0)n+1),

we replace each xi by the (already defined) barycenter of (x1, . . . , xi−1, xi+1, . . . , xn+1).
Then we do the same with the resulting set (x (1)1 , . . . , x (1)n+1), thus yielding a new set

(x (2)1 , . . . , x (2)n+1). Repeating this procedure and passing to the limit along the Cauchy

sequences (x (k)i )k∈N, the corresponding set will collapse to a single point, which we
call the barycenter of (x1, . . . , xn+1) and we denote it by bar(x1, . . . , xn)= bar(xi ; i =
1, . . . , n). The proof of this convergence will be accomplished inductively together with
the following crucial relation:

d(barn(x1, . . . , xn), barn(x1, . . . , xn))≤
1
n

n∑
i=1

d(xi , yi ). (3)

First, for n = 2, the barycenter is already defined, and (3) reduces to (2). Now, assuming
that we have shown the existence of the barycenter as well as inequality (3) for families
of n points, let us consider a family (x1, . . . , xn+1). For each i 6= j in {1, . . . , n + 1}, we
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have

d(x (1)i , x (1)j ) = d(barn(x1, . . . , xi−1, xi+1, . . . , xn+1),

barn(x1, . . . , x j−1, x j+1, . . . , xn+1))≤
d(xi , x j )

n
.

Therefore,

diam{x (1)1 , . . . , x (1)n+1} ≤
1
n

diam{x1, . . . , xn+1},

and more generally, for all k ≥ 1,

diam{x (k)1 , . . . , x (k)n+1} ≤
1
nk diam{x1, . . . , xn+1}.

By this inequality and Lemma 2.1 below, the diameter of the convex closure of
{x (k)1 , . . . , x (k)n+1} converges to zero as k goes to infinity. Since x (l)i belongs to this convex
closure for all l ≥ k, this shows that barn+1(x1, . . . , xn+1) is well defined.

Next, take two families (x1, . . . , xn+1) and (y1, . . . , yn+1). By the inductive
hypothesis, for each index i ∈ {1, . . . , n + 1},

d(x (1)i , y(1)i ) = d(barn(x1, . . . , xi−1, xi+1, . . . , xn+1),

barn(y1, . . . , yi−1, yi+1, . . . , yn+1))≤
1
n

∑
j 6=i

d(x j , y j ).

Summing over all i = 1, . . . , n + 1, this yields

n+1∑
i=1

d(x (1)i , y(1)i )≤

n+1∑
i=1

d(xi , yi ).

More generally, for all k ≥ 1,

n+1∑
i=1

d(x (k)i , y(k)i )≤

n+1∑
i=1

d(x (k−1)
i , y(k−1)

i )≤ · · · ≤

n+1∑
i=1

d(xi , yi ).

Letting k go to infinity, all the points x (k)i (respectively y(k)i ) converge to
barn+1(x1, . . . , xn+1) (respectively barn+1(y1 . . . , yn+1)). Hence, passing to the limit
in the previous inequality, we obtain

(n + 1) d(barn+1(x1, . . . , xn+1), barn+1(y1 . . . , yn+1))≤

n+1∑
i=1

d(xi , yi ),

as we wanted to show.

LEMMA 2.1. The diameter of the convex closure of every bounded subset of X equals its
own diameter.

Proof. An explicit inductive description of the convex closure of a bounded subset B
of X (i.e. the smallest convex subset of X containing B) proceeds as follows. Letting
B0 := B and having defined B1, . . . , Bn , we let Bn+1 be the union of all geodesics with
endpoints in Bn . Then Bn ⊂ Bn+1, and the closure of the union B∞ :=

⋃
n Bn is the convex
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closure of B. Since B∞ contains B, we have diam(B∞)≥ diam(B). To show the converse
inequality, it suffices to show that for all n ≥ 0,

diam(Bn+1)≤ diam(Bn). (4)

To check this, given arbitrary points x, y in Bn+1, we may find x0, x1 and y0, y1 in Bn

such that x (respectively y) lies in the geodesic joining x0 and x1 (respectively y0 and y1).
The convexity of the distance along geodesics shows that

d(x, y0)≤max{d(x0, y0), d(x1, y0)} ≤ diam(Bn),

d(x, y1)≤max{d(x0, y1), d(x1, y1)} ≤ diam(Bn).

Another application of this convexity then shows that

d(x, y)≤max{d(x, y0), d(x, y1)} ≤ diam(Bn).

Since x, y were arbitrary points of Bn+1, this shows (4). 2

By the symmetry of the construction, for every permutation σ of {1, . . . , n},

barn(x1, . . . , xn)= barn(xσ(1), . . . , xσ(n)).

With this in mind, (3) implies that

d(barn(x1, . . . , xn), barn(y1, . . . , yn))≤
1
n

min
σ∈Sn

n∑
i=1

d(xi , yσ(i)).

The important observation here is that (by a theorem of Garrett Birkhoff; see [8,
Introduction]) the right-hand-side expression above corresponds to the 1-Wasserstein
distance between certain probability measures. More precisely,

1
n

min
σ∈Sn

n∑
i=1

d(xi , yσ(i))=W1(µ1, µ2),

where µ1 := (1/n)(δx1 + · · · + δxn ) and µ2 := (1/n)(δy1 + · · · + δyn ). In order to obtain
a barycenter map that is 1-Lipschitz for the 1-Wasserstein metric, we would need to
define the barycenter of (1/n)(δx1 + · · · + δxn ) as barn(x1, . . . , xn). However, such
a definition is not intrinsic. For instance, though the n-set (x1, x2, . . . , xn) and
the 2n-set (x1, x1, x2, x2, . . . , xn, xn) should be identified as measures, the points
barn(x1, x2, . . . , xn) and bar2n(x1, x1, x2, x2, . . . , xn, xn) do not necessarily coincide.
For example, the reader may easily check that for X a tripod of endpoints x, y, z and edges
of the same length `, the points bar4(x, x, y, x) and b8(x, x, x, x, y, y, z, z) are different.
(The former is at distance 7`/9 from x , while the latter is at distance 2533`/3150 from the
same vertex; see Figure 1.)

To solve the problem above, we will slightly modify the definition of the barycenter
of finite families of points so that it becomes invariant under the procedure—at the
level of measures—of ‘subdivision of mass along the atoms’. Given an arbitrary family
Q = (x1, . . . , xn) of points in X , we let

Qk
:= (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn),

where the number of blocks is k.
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bar bar

FIGURE 1.

PROPOSITION 2.2. The sequence of barycenters barnk(Qk) is a Cauchy sequence.

Assuming that this proposition holds, and since X is supposed to be complete, we may
define the (canonical) barycenter

bar?
(

1
n
(δx1 + · · · + δxn )

)
as the limit point of the sequence barnk(Qk). Indeed, one can easily check that this limit
point depends only on the corresponding measure and not on any particular way of writing
it as an equally weighted mean of Dirac measures (with not necessarily different atoms).
Moreover, we still have the crucial relation

d

(
bar?

(
1
n
(δx1 + · · · + δxn )

)
, bar?

(
1
n
(δx1 + · · · + δxn )

))
≤

1
n

min
σ∈Sn

n∑
i=1

d(xi , yσ(i)).

Thus, denoting by PQ(X) the set of atomic probability measures on X all of whose atoms
have rational mass, we have a well-defined map bar? : PQ(X)→ X , and the previous
inequality means that this map is 1-Lipschitz for the 1-Wasserstein metric: for all µ1, µ2

in PQ(X),
d(bar?(µ1), bar?(µ2))≤W1(µ1, µ2). (5)

If X is separable, then it is known that PQ(X) is W1-dense in P1(X). We may thus extend
the map bar? to all P1(X) so that (5) holds for all µ1, µ2 in P1(X). This concludes our
construction.

Remark 2.3. It is worth pointing out that for CAT(0)-spaces, bar? does not necessarily
coincide with the Cartan barycenter. Indeed, for the example illustrated in Figure 1, the
Cartan barycenter of the measure δx/2+ δy/4+ δz/4 is the origin, though the barycenter
bar? of this measure lies on the axis joining the origin to x (see the final remark of [4,
Section I.2]).

To close this section, we next give a proof of Proposition 2.2. We observe that
this proposition is also proved in [4] by means of a quite indirect argument that uses a
deep martingale theorem and requires X to satisfy a weak local-compactness property.
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Although this very elegant approach does not seem to be the most appropriate one in view
of the purely geometric nature of the statement, the reader will still recognize a certain
probabilistic flavor in our computations below. The key estimate for the distance between
the barycenters of Qk and Qk+l is provided by the following lemma.

LEMMA 2.4. For every 1/2< α < 2/3, there exists a constant C = C(α) > 0 and L � 1
such that for all positive integers l, k satisfying L ≤ l ≤

√
k,

d(barnk(Q
k), barn(k+l)(Q

k+l))≤ C D
l3α−1

k
, (6)

where D denotes the diameter of the set {x1, . . . , xn}. Moreover, for 0≤ l ≤ L, there is
the weaker estimate

d(barnk(Q
k), barn(k+l)(Q

k+l))≤ D
l

k
. (7)

Assuming that this lemma holds, let us prove Proposition 2.2. Given ε > 0, fix an
integer kε ≥max{L , 10} such that

D

kε
+

33−3αC D

(2− 3α)(kε − 1)2−3α < ε,

where C is the constant provided by Lemma 2.4. For any k1 < k2 larger than kε, define
the sequence (` j ) by `1 := k2

ε and ` j+1 := ` j + [
√
` j ]. One can easily check by induction

that ` j ≥ (kε + j)2/9 holds for all j ≥ 1. Choose m ≥ 1 such that `m < k2 ≤ `m+1. By
Lemma 2.4,

d(barn` j (Q
` j ), barn` j+1(Q

` j+1)) ≤ C D
[` j+1 − ` j ]

3α−1

` j

≤
C D

`
(3−3α)/2
j

, j = 1, 2, . . . , m − 1.

Moreover,

d(barn`m (Q
`m ), barnk2(Q

k2))≤ D
[`m+1 − `m]

`m
≤

D

`
1/2
m

.

Using the triangle inequality, this yields

d(barnk1(Q
k1), barnk2(Q

k2)) ≤
D

`
1/2
m

+

m−1∑
j=1

C D

`
(3−3α)/2
j

≤
D

kε
+

∞∑
j=1

33−3αC D

(kε + j)3−3α

≤
D

kε
+ 33−3αC D

∫
∞

kε−1

dx

x3−3α

≤
D

kε
+

33−3αC D

(2− 3α)(kε − 1)2−3α < ε,

thus showing the Cauchy property.
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It remains to prove Lemma 2.4. For this purpose we require the following lemma.

LEMMA 2.5. Given integers 1≤ l < m and points x, y1, . . . , ym in X, the distance
between x and barm(y1, . . . , ym) is smaller than or equal to the mean distance between
x and the points of the form barm−l(y1, . . . , ŷi1 , . . . , ŷil , . . . , ym), where i1, . . . , il
range over all possible choices of different values in {1, . . . , m} (and each weight equals
m(m − 1) · · · (m − l + 1)= m!/(m − l)!).

Proof. For l = 1, this follows as an application of (3) to

barm(y1, . . . , ym)= barm(barm−1(y1, . . . , ŷi , . . . , ym); i = 1, . . . , m).

The general case easily follows by an inductive argument using (3) again. 2

The idea of the proof of Lemma 2.4 consists in viewing the process of ‘reduction of
coordinates’ for passing from Qk+l to Qk as a random process, which should imitate a
Bernoulli trial for large values of k� l (this process has a hypergeometric multivariate
distribution). For each index j , the final associated error (i.e. the difference between l
and the number of deleted entries x j ) should be—in mean—much smaller than ln. This
allows us to pass from the elementary though useless upper bound∼ Dl/k for the distance
between the barycenters to the much better upper bound ∼ C Dl3α−1/k.

Proof of Lemma 2.4. As explained above, estimate (7) follows as a direct application of
Lemma 2.5, so let us concentrate on (6). Lemma 2.5 again implies that the distance from
barnk(Qk) to barn(k+l)(Qk+l) is smaller than or equal to the mean of the distance between
barnk(Qk) and the points barnk(y1, . . . , ykn), where (y1, . . . , ykn) ranges over all families
that coincide with Qk+l except for the deletion of ln entries. Among these families, the
number of those for which the deleted entries correspond to an x j -position a number of
times equal to i j (with i1 + · · · + in = nl) is(

k + l

i1

)(
k + l

i2

)
· · ·

(
k + l

in

)
.

Moreover, the distance from the barycenter of such a family to bar(Qk) is smaller than or
equal to

D

kn
(|i1 − l| + |i2 − l| + · · · + |in − l|).

By Lemma 2.5, this implies that d(barnk(Qk), barn(k+l)(Qk+l)) is smaller than or equal to

D

kn

∑
i1+···+in=nl

(k+l
i1

)(k+l
i2

)
· · ·

(k+l
in

)(n(k+l)
nl

) (|i1 − l| + |i2 − l| + · · · + |in − l|)

=
D

k

nl∑
i=0

(k+l
i

)(
(n−1)(k+l)

nl−i

)(n(k+l)
nl

) |i − l|

=
D

k

nl−l∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) i +
D

k

l∑
i=0

(k+l
l−i

)(
(n−1)(k+l)

nl−l+i

)(n(k+l)
nl

) i.
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We will estimate the first of the two sums above, leaving to the reader the task of carrying
out analogous computations for the second sum. First, notice that

D

k

nl−l∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) i =
D

k

lα∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) i +
D

k

nl−l∑
i=lα

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) i

≤
Dlα

k

lα∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

)
+

D(nl − l)

k

nl−l∑
i=lα

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

)
≤

Dlα

k
+

D(n − 1)l
k

(
1−

lα∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) )
.

The proof will then follow from an estimate of the form

1−
lα∑

i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) ≤
C

l2−3α . (8)

To show this, first rewrite(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

)
=

(k+l
l

)(
(n−1)(k+l)
(n−1)l

)(n(k+l)
nl

) k(k − 1) · · · (k − i + 1)
(l + 1)(l + 2) · · · (l + i)

((n − 1)l)((n − 1)l − 1) · · · ((n − 1)l − i + 1)
((n − 1)k)((n − 1)k + 1) · · · ((n − 1)k + i)

.

Now, using the improved version of Stirling’s inequality (see [2, Ch. II.9])

√
2πm

(
m

e

)m

e1/(12m+1)
≤ m! ≤

√
2πm

(
m

e

)m

e1/12m,

one can easily check that for a certain e9/(12(l+1))
≤ λ≤ e9/12l ,(k+l

l+i

)(
(n−1)(k+l)
(n−1)l−i

)(n(k+l)
nl

) = λ

√
(k + l)n

2πkl(n − 1)
≥ λ

√
n

2πl(n − 1)
. (9)

On the other hand, choosing L � 1 and c > 0 such that |log(1+ x)− x | ≤ cx2 holds for
all |x | ≤ 1/L2−2α , for all l ≥ L ,

log
(

k(k − 1) · · · (k − i + 1)
(l + 1)(l + 2) · · · (l + i)

((n − 1)l)((n − 1)l − 1) · · · ((n − 1)l − i + 1)
((n − 1)k)((n − 1)k + 1) · · · ((n − 1)k + i)

)
= log

(
(1− (1/k)) · · · (1− ((i − 1)/k))

(1+ (1/ l))(1+ (2/ l)) · · · (1+ (i/ l))

×
(1− (1/(n − 1)l)) · · · (1− (i − 1)/(n − 1)l)
(1+ (1/(n − 1)k)) · · · (1+ (i/(n − 1)k))

)
≥−

i−1∑
m=1

m

(n − 1)l
−

i∑
m=1

m

l
−

i−1∑
m=1

m

k
−

i∑
m=1

m

(n − 1)k
− 2c

(
i3

l2

)
− 2c

(
i3

k2

)
≥−

i2n

2l(n − 1)
−

i(n − 2)
2l(n − 1)

− 4cl3α−2.
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Putting this together with (9) and using the inequality 1− x ≤ e−x , one easily concludes
that

lα∑
i=0

(k+l
l+i

)(
(n−1)(k+l)

nl−l−i

)(n(k+l)
nl

) ≥

(
1−

C̄

l2−3α

) lα∑
i=0

√
n

2πl(n − 1)
e−(i

2n/2(n−1)l).

The series involved can obviously be compared with an integral:

lα∑
i=0

√
n

2πl(n − 1)
e−(i

2n)/(2(n−1)l)

=

√
n

2π(n − 1)

lα∑
i=0

e−(i
2n)/(2(n−1)l)
√

l

≥

√
n

2π(n − 1)

∫ lα

0
e−(x

2n)/(2(n−1)l) dx

≥
1
√

2π

∫ lα
√

n/((n−1)l)

0
e−x2/2 dx = 1−

∫
∞

lα
√

n/((n−1)l)
e−x2/2 dx

≥ 1− 2e−`
α/2
√

n/((n−1)l).

Putting all of this together, one easily obtains (8), which concludes the proof. 2

An application: a fixed point theorem. By construction, the map bar? is equivariant under
the action of isometries. As a consequence, every action of a compact group by isometries
of a Buseman space has a fixed point. Indeed, the push-forward of the Haar measure along
an orbit is an invariant probability measure for the action. By equivariance, the barycenter
bar? of this measure must remain fixed.

Despite the simple argument above, it is worth pointing out that a much stronger result
holds: if a group action by isometries of a Buseman space has a (non-empty) compact
invariant set, then it has a fixed point. (In particular, actions on a proper such space
with bounded orbits must have fixed points.) Although the author was convinced that
this was quite well known, according to the specialists it is apparently new, so we sketch
the argument of the proof below (the details are left to the reader).

We will use the following construction. Given a compact subset B of X , we let B∗

be the set of all midpoints between points of B whose distance realizes the diameter. By
Lemma 2.1,

diam(B∗)≤ diam(B)=: D.

Moreover, if equality holds, then there are points x1, x2, x3, x4 in B such that the distance
between any of them equals D. Indeed, let y, z in B∗ be such that d(y, z)= D. Let x1, x2

(respectively x3, x4) be points in B such that y (respectively z) is the midpoint between x1

and x2 (respectively x3 and x4) and d(x1, x2)= d(x3, x4)= D. Using

D = d(y, z)≤
d(x1, x3)

2
+

d(x2, x4)

2
≤ D,
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we conclude that d(x1, x3)= d(x2, x4)= D. Similarly, using

D = d(y, z)≤
d(x1, x4)

2
+

d(x2, x3)

2
≤ D,

we conclude that d(x1, x4)= d(x2, x3)= D.
The preceding argument easily allows us to show the following generalization: starting

with B1 := B of diameter D, define inductively Bn := (Bn−1)
∗. If diam(BN )= D, then

there exist 2N points x1, . . . , x2N in B such that the distance between any of them
equals D.

Assume now that 0 acts on X preserving a compact set B̂. Compactness type arguments
easily yield a compact invariant subset B of B̂ of minimal diameter D. We claim that B
is a single point (hence a fixed point for the action). Indeed, assume otherwise and cover
B by finitely many (say, M) open balls of radius D/2. Since all the Bn are also compact
and invariant, the minimality of D yields diam(Bn)= D for all n ≥ 1. Fix N such that
2N > M . By the discussion above, there exists a sequence of points x1, . . . , x2N in B
such that the distance between any of them equals D > 0. However, this is impossible by
the choice of N .

3. The L1 ergodic theorem
To simplify, given ϕ :�→ X , let us denote by

µn,ϕ(ω) :=
1

mG(Fn)

∫
Fn

δϕ(T g
ω) dmG(g)

the nth empirical measure associated to ϕ. Notice that for all ϕ, ψ in L1(P, X) and all
n ≥ 1, ∫

�

d(bar?(µn,ϕ(ω)), bar?(µn,ψ (ω))) d P(ω)

=

∫
�

d

(
bar?

(
1

mG(Fn)

∫
Fn

δϕ(T g
ω) dmG(g)

)
,

bar?
(

1
mG(Fn)

∫
Fn

δψ(T gω) dmG(g)

))
d P(ω)

≤

∫
�

1
mG(Fn)

∫
Fn

d(ϕ(T gω), ψ(T gω)) dmG(g) d P(ω)

=

∫
�

d(ϕ(ω), ψ(ω)) d P(ω),

hence ∫
�

d(bar?(µn,ϕ(ω)), bar?(µn,ϕ(ω))) d P(ω)≤ d1(ϕ, ψ). (10)

To prove the main theorem, let us first assume that ϕ takes values in a finite set,
say {x1, . . . , xk}, and let �i be the preimage of {xi } under ϕ. A direct application of
Lindenstrauss’s ergodic theorem [3] to the characteristic function of�i yields the existence
almost everywhere of the following limit:

λi (ω) := lim
n→∞

mG({g ∈ Fn : T gω ∈�i })

mG(Fn)
.
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We claim that almost surely we have the convergence

bar?(µn,ϕ)−→ bar?
( k∑

i=1

λi (ω)δxi

)
. (11)

Indeed, since bar? is 1-Lipschitz for W1, given ε > 0 we have that for almost every ω ∈�
there exists n(ω, ε)≥ 1 such that for all n ≥ n(ω, ε),

d

(
bar?(µn,ϕ), bar?

( k∑
i=1

λi (ω)δxi

))

≤W1

( k∑
i=1

mG({g ∈ Fn : T gω ∈�i })

mG(Fn)
δxi ,

k∑
i=1

λi (ω)δxi

)

≤

k∑
i=1

∣∣∣∣mG({g ∈ Fn : T gω ∈�i })

mG(Fn)
− λi (ω)

∣∣∣∣diam{x1, . . . , xk}

≤ ε.

This shows the convergence (11). Now notice that by construction, both bar?(µn,ϕ) and
bar?(

∑k
i=1 λi (ω)δxi ) belong to the convex closure of {x1, . . . , xk}. By Lemma 2.1, this

implies that for all n ≥ 1, the distance between these two points is less than or equal to
diam{x1, . . . , xk}. A direct application of the dominated convergence theorem then shows
that the convergence (11) also holds in L1(P, X).

In order to deal with the general case we will need the next lemma.

LEMMA 3.1. There exists a constant C > 0 (depending only on the sequence (Fn)) such
that for all ϕ, ψ in L1(X, µ) and all λ > 0,

P[ω ∈� : sup
n≥1

d(bar?(µn,ϕ(ω)), bar?(µn,ψ (ω)))≥ λ] ≤
C

λ
d1(ϕ, ψ). (12)

Proof. Since bar? is 1-Lipschitz for W1, the set involved in the inequality above is
contained in {ω ∈� : supn≥1 W1(µn,ϕ, µn,ψ )≥ λ}. Now, noticing that the measure

νn :=
1

mG(Fn)

∫
Fn

δ(ϕ(T gω),ψ(T gω)) dmG(g)

lies in (µn,ϕ |µn,ψ ), we obtain

W1(µn,ϕ, µn,ψ )≤
1

mG(Fn)

∫
Fn

d(ϕ(T gω), ψ(T gω)) dmG(g).

Thus, the left-hand-side expression in (12) is smaller than or equal to

P
[
ω ∈� : sup

n≥1

1
mG(Fn)

∫
Fn

d(ϕ(T gω), ψ(T gω)) dmG(g)≥ λ

]
.

Now, a direct application of Lindenstrauss’s maximal ergodic theorem (see [3,
Theorem 3.2]) yields the existence of a constant C > 0 (depending only on (Fn)) such
that this last probability is smaller than or equal to

C

λ

∫
�

d(ϕ(ω), ψ(ω)) d P(ω),

as desired. 2
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We may now complete the proof of the main theorem. Since X is assumed to
be separable, for each ϕ ∈ L1(P, X) there exists a sequence of finite-valued functions
ϕk :�→ X that converges to ϕ in the L1 sense. Thus, given ε > 0, we may fix ψ := ϕkε
such that d1(ϕ, ψ)≤ ε

2. By (12),

P
[
ω ∈� : sup

n≥1
d(bar?(µn,ϕ(ω)), bar?(µn,ψ (ω)))≥ ε

]
≤

C

ε
d1(ϕ, ψ)≤ Cε.

Since bar?(µn,ψ ) is known to converge almost everywhere, this inequality implies that on
a set of measure at least 1− Cε, the sequence (bar?(µn,ϕ(ω))) asymptotically oscillates by
at most 2ε. Since this is true for all ε > 0, this shows that bar?(µn,ϕ(ω)) converges almost
surely.

Finally, to show the convergence in L1(�, X), just notice that by (10),∫
�

d(bar?(µn,ϕ(ω)), bar?(µm,ϕ(ω))) d P(ω)

≤

∫
�

[d(bar?(µn,ϕ), bar?(µn,ϕk ))+ d(bar?(µn,ϕk ), bar?(µm,ϕk ))

+ d(bar?(µm,ϕk ), bar?(µm,ϕ))] d P(ω)

≤ 2d1(ϕ, ϕk)+

∫
�

d(bar?(µn,ϕk ), bar?(µm,ϕk )) d P(ω).

For a given ε > 0, we may fix k large enough so that d1(ϕ, ϕk)≤ ε/3. Since bar?(µn,ϕk )

converges in L1(P, X) as n goes to infinity, we may fix nε so that for all n, m larger than
nε, ∫

�

d(bar?(µn,ϕk ), bar?(µm,ϕk )) d P(ω)≤
ε

3
.

Putting all of this together, we obtain that for all n, m larger than nε,∫
�

d(bar?(µn,ϕ(ω)), bar?(µm,ϕ(ω))) d P(ω)≤ ε.

Hence, bar?(ϕn,ϕ) is a Cauchy sequence in L1(P, X), as we wanted to show.
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de Probabilités XXXIII (Lecture Notes in Mathematics, 1709). Springer, Berlin, 1999, pp. 355–370.

[5] J. Jost. Nonpositive curvature: geometric and analytic aspects (Lectures in Mathematics). ETH Zürich,
1997.

[6] A. Karlsson and F. Ledrappier. Noncommutative ergodic theorems. Geometry, Rigidity, and Group Actions
(Chicago Lectures in Mathematics). Eds. B. Farb and D. Fisher. University of Chicago Press, Chicago, IL,
2011, pp. 396–418.

[7] K.-T. Sturm. Probability measures on metric spaces of nonpositive curvature. Heat Kernels and Analysis
on Manifolds, Graphs, and Metric Spaces (Contemporary Mathematics, 338). American Mathematical
Society, Providence, RI, 2003, pp. 357–390.

[8] C. Villani. Topics in Optimal Transportation (Graduate Studies in Mathematics, 58). Springer, Berlin,
2003.


