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We provide an infinite family of left-ordered groups that have
a positive cone that is generated by two elements as a semigroup.
This family corresponds to that of certain central extensions of
Hecke groups, and includes the Klein bottle group and the braid
group B3. Using the classical convex extension (flipping) procedure,
on each of the groups of this family we define an ordering sharing
many properties with Dehornoy’s. Several related questions and
problems are addressed.
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Braid groups are relevant in many branches of Mathematics. In recent years, they have been stud-
ied as important examples of left-orderable groups (that is, groups admitting a total order which is
invariant by left-multiplication). Historically, the first such order on Bn (for all n � 3) was defined
by Dehornoy using pure algebraic (and quite deep) methods [5]. Some years later, an alternative
geometric approach using Nielsen’s theory was proposed by Thurston [19]. In this work we will, nev-
ertheless, be more interested in other kinds of orders on braid groups, first introduced by Dubrovina
and Dubrovin [9].

We will restrict the discussion to B3 = 〈σ1, σ2: σ1σ2σ1 = σ2σ1σ2〉. (Potential generalizations to
general Bn will be discussed in Section 5.) In [9], it is shown that there is a unique left-invariant total
order �D D on B3 satisfying σ1σ2 �D D id and σ−1

2 �D D id. This is a rather surprising fact (actually, it
was conjectured as impossible in [6, Conjecture 10.3.1]) which gives a new insight on the combinato-
rial structure of the Cayley graph of B3 (cf. Fig. 2).

The situation described above is reminiscent to that of the Klein bottle group K2 = 〈a,b: a−1ba =
b−1〉. Indeed, K2 is left-orderable, and there exits a unique left-ordering � satisfying a � id and b � id.
However, K2 is a less interesting example because it admits only four left-invariant total orders (each
of which is completely determined by the “signs” of a and b), whereas B3 admits uncountably many
[16,19].
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Fig. 1. The finitely generated positive cone P+ = 〈a,b〉+ on K2 = 〈a,b: a−1ba = b−1〉.

The fact that certain left-orderings are determined by finitely many inequalities comes from the
structure of their positive cone. This corresponds to the set of elements which are positive (that is,
bigger than the identity), and it is easy to see that it is a semigroup. Actually, as is readily checked,
the property of being left-orderable for a group Γ is equivalent to the existence of a (disjoint) de-
composition

Γ = P+ � P− � {id},

where P+ and P− are semigroups, with P− = {g−1: g ∈ P+}. Now the point is that such a decom-
position exists, for both K2 and B3, with P+ (and P−) finitely generated. For instance, denoting by
〈g1, . . . , gk〉+ the semigroup generated by {g1, . . . , gk}, we have

K2 = 〈a,b〉+ � 〈
a−1,b−1〉+ � {id}.

This decomposition can be visualized in Fig. 1, where the elements in 〈a,b〉+ (that is, the positive
elements of the induced ordering) are blackened.

A similar phenomenon occurs for B3. Indeed, letting a = σ1σ2 and b = σ−1
2 , we also have the

decomposition

B3 = 〈a,b〉+ � 〈
a−1,b−1〉+ � {id}.

The proof of this fact is given in [9]. It is very indirect and uses Dehornoy’s theory. We will propose
an alternative argument which applies to a larger family of groups. As a byproduct, we will retrieve
(and generalize) the Dehornoy ordering and some of its properties by rather elementary methods (see
Section 4).

As in the case of K2, the decomposition of B3 above may be easily illustrated: see Fig. 2. The Cayley
graph of B3 is, essentially, a product of Z2 by a dyadic rooted tree. The (quasi-isometric) copy of Z2

corresponds to the “upper level” of the graph, and the corresponding edges are slightly blackened.
An arrow pointing to the right should be added to every horizontal edge of the graph. These edges
represent multiplications by a, and all other (oriented) edges represent multiplications by b. Starting
at id, every blackened element can be reached by a path that follows the direction of the arrows.
Conversely, every element which is not blackened may be reached by a path starting at id following
a direction opposite to that of the arrows. Finally, no (nontrivial) element can be reached both ways.
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Fig. 2. The Cayley graph of B3 = 〈a,b: ba2b = a〉 and the DD-positive cone.

The Klein bottle group may be presented in the form

K2 = 〈a,b: bab = a〉.

Moreover, with respect to the generators a = σ1σ2 and b = σ−1
2 , the standard presentation of B3

becomes

B3 = 〈
a,b: ba2b = a

〉
.

This makes natural the study of the groups

Γn = 〈
a,b: banb = a

〉
.

These groups have been already considered in [4,8] as examples lying on the border of the theory of
Gaussian and Garside groups. We will show that, though they do not fit in these important categories,
they share a remarkable combinatorial property with B3.

Main Theorem. For each n � 1, the group Γn admits the decomposition

Γn = 〈a,b〉+ � 〈
a−1,b−1〉+ � {id}.

The proof of this result involves two issues. First, we need to show that every nontrivial element
w ∈ Γn belongs to either 〈a,b〉+ or 〈a−1,b−1〉+ . For this, we begin by appealing to the theory of



Author's personal copy

34 A. Navas / Journal of Algebra 328 (2011) 31–42

Garside groups and write w in the form w = uv−1 for some u, v in 〈a,b〉+ (see Section 1). This
creates central handles, that is, expressions of the form abka−1. The main point here is that these
handles belong to one of the semigroups above. Indeed, from the relation banb = a one easily deduces
that abka−1 = (a−(n−1)b−1)k . Due to this, the corresponding reduction procedure that we will perform
in Section 2 for showing that Γn \ {id} = 〈a,b〉+ ∪ 〈a−1,b−1〉+ , though similar, is much simpler than
the Dehornoy handle reduction algorithm [7]. In particular, its convergence follows from elementary
combinatorial arguments.

The second issue consists in showing that 〈a,b〉+ and 〈a−1,b−1〉+ are disjoint, which is equivalent
to showing that 〈a,b〉+ does not contain the identity. This is done in Section 3 by means of a quite
simple ping-pong type argument. As a motivation, recall the well-known representation of B3 in
PSL(2,R) given by

σ1 →
[

1 1
0 1

]
, σ2 →

[
1 0

−1 1

]
.

This representation induces an action of B3 on the circle (viewed as the projective line), and by
looking at the dynamics of this action, this yields the desired property by a ping-pong type argument.
The extension of this proof to Γn is straightforward, as one may easily produce an action of Γn on
the circle satisfying similar dynamical properties. (Actually, Γn embeds into P̃SL(2,R) for n � 2, and
its image in PSL(2,R) is isomorphic to the so-called Hecke groups 〈u, v: u2 = vn+1〉 [11, Chapter II,
Example 28].) Although this idea is new in the context, it is very natural. Indeed, the property to be
shown implies that Γn is left-orderable, and left-orderability for countable groups is equivalent to the
existence of faithful actions by (orientation-preserving) homeomorphisms of the real-line [10,14]. In
the present case, the action on the circle appears by taking the quotient with respect to the central
cyclic subgroup 〈an+1〉.

1. Γn as a group of fractions

Unless otherwise stated, in what follows we will only consider the case n > 1: the case n = 1 is
elementary and we leave it to the reader.

We begin by noticing that � = an+1 belongs to the center of Γn .1 Indeed,

b� = ban+1 = (
ban)a = (

ab−1)a = a
(
b−1a

) = a
(
anb

) = an+1b = �b, a� = an+2 = �a.

A word in (positive powers of) a,b (resp. a−1,b−1) will be said to be positive (resp. negative). It is
non-positive (resp. non-negative) if it is either trivial or negative (either trivial or positive).

Proposition 1.1. Every element w ∈ Γn may be written in the form ū�� for some non-negative word ū and
� ∈ Z.

Proof. In any word representing w , we may rewrite the negative powers of a and b using the re-
lations a−1 = an�−1 and b−1 = �−1anban. Since � belongs to the center of Γn , this shows the
proposition.2 �

Let us take a more careful look at the positive words in a,b. Using the relation banb = a, one easily
concludes that every v ∈ 〈a,b〉+ may be written in the form

1 Although it will be not used in this work, it is worth mentioning that the center of Γn coincides with the cyclic group gen-
erated by an+1. This is a direct consequence of [17]. More elementary, this can be easily deduced by looking at the embedding
of Γn in P̃SL(2,R) to be discussed in Section 3.

2 This argument is motivated by the fact that the presentation Γn = 〈a, c: cac = an〉 endows Γn with a structure of a Garside
group: see [4, p. 268] and [8, Example 2]. Indeed, as is well known, Garside groups are groups of fractions of the corresponding
monoids.
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v = bn0am1 bn1 · · ·bnk−1amk bnk��,

where ni > 0 for i ∈ {1, . . . ,k}, n0 � 0, nk � 0, mi ∈ {1, . . . ,n}, and � � 0. Moreover, if mi = n and
0 < i < k, then we may replace bni−1 ami bni = bni−1−1(banb)bni−1 by bni−1−1abni−1. This is also possible
for i = 0 (resp. i = k) when n0 > 0 (resp. nk > 0). Performing these reductions as far as possible, we
conclude that v may be written in the form

v = bn0am1 bn1 · · ·bnk−1amk bnk��,

so that the following properties are satisfied:

(i) ni > 0 for 0 < i < k, n0 � 0, nk � 0.
(ii) mi ∈ {1, . . . ,n − 1} for 1 < i < k.

(iii) m1 lies in {1, . . . ,n−1} (resp. {1, . . . ,n}) if n0 > 0 (resp. n0 = 0); similarly, mk lies in {1, . . . ,n−1}
(resp. {1, . . . ,n}) if nk > 0 (resp. nk = 0).

(iv) � � 0.

Here, for k = 0, an expression as above should be understood as bn0�� , where n0 � 0.
Therefore, by Proposition 1.1, every element w ∈ Γn may be written in the form

w = bn0am1 bn1 · · ·bnk−1amk bnk�� = u��, (1)

where properties (i), (ii), and (iii) above are satisfied, and � ∈ Z. Such an expression will be said to be
a normal form for w .

2. Eliminating numerators or denominators

Let w = u�� be a normal form of a nontrivial element w ∈ Γn . Our task consists in showing that
w is either positive or negative in a,b. If u is trivial, then w is positive or negative according to the
sign of �. If u is nontrivial and � � 0, then w is positive. Assume throughout that u is nontrivial and
� < 0. We will show that, in this situation, w is negative.

Case I. We have u = br for some positive integer r.

In this case, the relation banb = a yields aba−1 = a−(n−1)b−1, hence

w = bra−1a−n��−1 = a−1(aba−1)r
a−n��−1 = a−1(a−(n−1)b−1)r

a−n��−1.

Case II. The element u does not belong to 〈b〉:
Let us consider the normal form (1). There are two possibilities:

(i) If nk = 0, then using the relation aba−1 = a−(n−1)b−1 we obtain

w = bn0am1 bn1 · · ·amk−1 bnk−1amk��

= bn0am1 bn1 · · ·amk−1−1abnk−1a−1amk−n��−1

= bn0am1 bn1 · · ·amk−1−1(a−(n−1)b−1)nk−1amk−n��−1

= bn0am1 bn1 · · ·amk−2 bnk−2amk−1−nb−1(a−(n−1)b−1)nk−1−1
amk−n��−1

= bn0am1 bn1 · · ·amk−2−1abnk−2a−1amk−1−n+1b−1(a−(n−1)b−1)nk−1−1
amk−n��−1.
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Fig. 3.

(ii) If nk > 0, then

w = bn0am1 bn1 · · ·amk−1abnk a−1a−n��−1

= bn0am1 bn1 · · ·amk−1(a−(n−1)b−1)nk a−n��−1

= bn0am1 bn1 · · ·amk−nb−1(a−(n−1)b−1)nk−1
a−n��−1

= bn0am1 bn1 · · ·amk−1−1abnk−1a−1amk−n+1b−1(a−(n−1)b−1)nk−1
a−n��−1.

The main point here is that in (i) we have mk − n � 0 and mk−1 − n + 1 � 0. Similarly, in (ii) we have
mk − n + 1 � 0. This allows repeating the argument. Proceeding in this way as far as possible, it is
easy to see that the final output will be a negative word representing w .

3. No positive word represents the identity

We begin with a proof that applies to B3 = 〈a,b: ba2b = a〉. The case of Γn will be treated with a
similar idea.

Proposition 3.1. No element in 〈a,b〉+ ⊂ B3 represents the identity.

Proof. Consider the representation of B3 in PSL(2,R) given by

a → ā =
[

0 1
−1 1

]
, b → b̄ =

[
1 0
1 1

]
.

Denote by U (resp. V ) the projection of {(x, y): x > y > 0} (resp. {(x, y): 0 < x < y}) into P1(R).
A direct computation shows that

ā

[
x
y

]
=

[
y

y − x

]
, b̄n

[
x
y

]
=

[
x

nx + y

]
,

which easily yields ā(V ) ⊂ U and b̄n(U ∪ V ) ⊂ V , for all n > 0. (See Fig. 3.)



Author's personal copy

A. Navas / Journal of Algebra 328 (2011) 31–42 37

Now given an element w ∈ 〈a,b〉+ , let us write it in the form

w = bn0am1 bn1 · · ·amk bnk a3r,

where k � 0, n0,nk, r are non-negative, ni > 0 for the other indexes i, and mi ∈ {1,2}, with mi = 1 for
1 < i < k, and m1 = 1 (resp. mk = 1) when n0 > 0 (resp. nk > 0). Notice that ā3 = id. Assume that w
is not a power of a3. In this case, to show that w 
= id, it suffices to prove that

w̄ = b̄n0 ām1 b̄n1 · · · āmk b̄nk

is nontrivial in PSL(2,R). Now using the relation b̄ā2b̄ = ā, one can easily check that, unless w̄ is
conjugate to a power of ab = σ1, it is conjugate to a word w̄ ′ in ā (with no use of ā2) and positive
powers of b̄ which either begins and finishes with a power of b̄, or begins and finishes with ā. Since
σ1 is not a torsion element, w̄ 
= id when w̄ is conjugate to σ1. Otherwise, a ping-pong type argument
shows that either w̄ ′(U ) ⊂ V or w̄ ′(V ) ⊂ U , hence w̄ ′ 
= id. �

The representation considered above is obtained via the well-known identification of B3 to
P̃SL(2,Z), followed by the quotient by the center 〈a3〉. Indeed, with respect to the system of gen-
erators { f = a, h = b−1a}, the presentation of B3 becomes 〈 f ,h: f 3 = h2〉.

It turns out that Γn also embeds into P̃SL(2,R). To see this, we first rewrite the presentation of Γn

in terms of f = a and h = b−1a:

Γn = 〈
f ,h: f n+1 = h2〉.

This presentation shows that Γn corresponds to a central extension of the Hecke group

H(n + 1) = 〈
f̄ , h̄: f̄ n+1 = h̄2 = id

〉
.

A concrete realization of H(n + 1) inside PSL(2,R) arises when identifying f̄ to the circle rotation
of angle 2π

n+1 , and h̄ to the hyperbolic reflexion with respect to the geodesic joining pn = f̄ n(p) and

p = p0 for some point p ∈ S1. This realization allows embedding Γn into P̃SL(2,R) by identifying
f ∈ Γn to the lifting of f̄ to the real line given by x �→ x + 2π

n+1 , and h to the (unique) lifting h of h̄

satisfying x � h(x) � x + 2π for all x ∈ R.3

The dynamics of the action of H(n + 1) on the circle is illustrated in Fig. 4. Here, ḡ = f̄ h̄−1 = f̄ h̄ is
a parabolic Möbius transformation fixing p0 and sending pn into p1, where pi = f̄ i(p) for 0 � i � n.
Using this action, we now proceed to show that no element w in 〈a,b〉+ ⊂ Γn represents the identity.

We begin by writing w in the form

w = bn0am1 bn1 · · ·amk bnk a(n+1)r,

where k � 0, n0,nk, r are non-negative, ni > 0 for 0 < i < k, and mi ∈ {1,2, . . . ,n}, with mi 
= n for
1 < i < k, and m1 
= n (resp. mk 
= n) when n0 > 0 (resp. nk > 0). If w were equal to the identity, then

w̄ = ḡn0 f̄ m1 ḡn1 · · · f̄ mk ḡnk

would act trivially on the circle. Assume that w is not a power of a. Then one easily checks that,
unless w̄ is a power of f̄ ḡ , it is conjugate either to some w̄ ′ ∈ 〈 f̄ , ḡ〉+ beginning and ending by f̄

3 Actually, the arguments given so far only show that the above identifications induce a group homomorphism from Γn into
P̃SL(2,R), and the injectivity follows from the arguments given below combined with the result of Section 2.
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Fig. 4.

and so that all exponents of a lie in {1, . . . ,n − 1}, or to some w̄ ′′ ∈ 〈 f̄ , ḡ〉+ beginning and ending
with g with all exponents of a in {1, . . . ,n − 1}. Now, an easy ping-pong type argument shows that
w̄ ′(]p0, p1[) ⊂ ]p1, pn[ and w̄ ′′(]p1, pn[) ⊂ ]p0, p1[, and hence w̄ ′ 
= id and w̄ ′′ 
= id. Thus, to conclude
the proof, we need to check that neither a nor f̄ ḡ are torsion elements.

That f̄ ḡ is not torsion follows from that it sends [p0, pn] into the subinterval [p1, p2], and hence
no iterate of it can equal the identity. Finally, to see that a is not torsion, just notice that a maps to
the translation by 2π

n+1 in P̃SL(2,R), and hence has infinite order.4

4. Dehornoy-like orderings

In what follows, we will denote by �n the left-ordering on Γn whose positive cone is 〈a,b〉+ .
Using �n , we will define an analog of the Dehornoy ordering.

We begin by recalling the Dehornoy ordering on B3. Consider the Artin (standard) presentation

B3 = 〈σ1,σ2: σ1σ2σ1 = σ2σ1σ2〉.
Following Dehornoy [5], an element of B3 is said to be 1-positive if it may be written as a word of
the form

σ
n0
2 σ1σ

n1
2 σ1 · · ·σ nk−1

2 σ1σ
nk
2 ,

where ni ∈ Z. It is said 2-positive if it is of the form σ n
2 for some n > 0. An element in B3 is said to

be D-positive if it is either 1-positive or 2-positive. The remarkable result of Dehornoy (in the case
of B3) asserts that the set of D-positive elements is the positive cone of a left-ordering �D on B3.
The proof given by Dehornoy as well as many subsequent proofs are very intricate (see [7] for a
detailed discussion on this). Nevertheless, a short proof using the ordering �2 may be given. What
follows is inspired from [14] (see Examples 3.35 and 3.36 therein).

Before continuing our discussion, recall that a subgroup Γ0 of a left-ordered group (Γ,�) is said
to be �-convex if g belongs to Γ0 whenever h1 ≺ g ≺ h2 for some h1,h2 in Γ0. Convex subgroups are
very useful for defining new orders: If (Γ,�) and Γ0 are as above and �′ is any left-ordering on Γ0,
then the extension of �′ by � is the left-ordering on Γ whose positive cone is

P+ = P+
�′ ∪

(
P+

� \ Γ0
)
.

4 This also follows from the main result of [3].
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Finally, we denote by �̄ the reverse ordering of �, that is, the left-ordering defined by g�̄id if and
only if g ≺ id.

Lemma 4.1. For each n ∈ N, the subgroup 〈b〉 ⊂ Γn is �n-convex. Moreover, the only �n-convex subgroups of
Γn are {id}, 〈b〉, and Γn itself.

Proof. Let c ∈ Γn be such that br ≺n c ≺n bs . Assume that c is �n-positive (the other case is anal-
ogous). If c does not belong to 〈b〉, then it may be written in the form w1aw2, where w1 and
w2 are (perhaps empty) words on non-negative powers of a and b. The inequality c ≺n bs yields
w = b−s w1aw2 ≺n id. Introducing the identity a = ba2b several times, one easily shows that w may
be rewritten as w = w ′

1 w2, where w ′
1 only uses positive powers of a and b. Thus, w is �n-positive,

which is a contradiction.
To show that the only �n-convex subgroups of Γn are {id}, 〈b〉, and Γn itself, we proceed by

contradiction. Clearly, 〈b〉 does not contain any nontrivial convex subgroup. Suppose that there exists
a �n-convex subgroup N of Γn such that 〈b〉 � N � Γn . Let �′ , �′′ , and �′′′ , be the left-orderings
defined on 〈b〉, N , and Γn , respectively, by:

– �′ is the restriction of �n to 〈b〉,
– �′′ is the extension of �′ by the restriction of �̄n to N ,
– �′′′ is the extension of �′′ by �n .

The order �′′′ is different from �n (the �n-negative elements in N \ 〈b〉 are �′′′-positive), but its
positive cone still contains the elements a,b. Nevertheless, this is impossible, since these elements
generate the positive cone of �n . �

Now let �̄n be the reverse ordering of �n , and let �′
n be the ordering of Γn obtained as the

extension of �̄n (restricted to 〈b〉) by �n . We claim that, for n = 2 (i.e. for B3), �′
n coincides with

the Dehornoy ordering �D . Indeed, if c ∈ 〈b〉 is �′
2-positive, then it is a negative power of b = σ−1

2 ,
hence �D -positive. If c ∈ B3 \ 〈b〉 is �′

2-positive, then it may be written as a word using only positive
powers of a and b. Replacing a = σ1σ2 and b = σ−1

2 , this allows writing c as a word where only
positive powers of σ1 are used. In particular, c is �D -positive. We thus conclude that the positive
cone of �D contains that of �′

2. Conversely, if a nontrivial element c is not �′
2-positive, then c−1 is

�′
2-positive, hence �D -positive; thus, c is neither �D -positive. This shows that the positive cone of

�′
2 contains that of �D .

The equivalence between �D and �′
2 gives a new proof of Dehornoy’s theorem (for B3). It also

motivates the following definition.

Definition 4.2. For each n � 2 the left-ordering �′
n on Γn will be called the Dehornoy-like ordering

of Γn .

As in the case of B3, an element c ∈ Γn is �′
n-positive if either c = b−k for some k � 1, or it may

be written in the form

c = bn0abn1a · · ·bnk−1abnk

for some ni ∈ Z (with k � 1). Notice that the smallest positive element of �′
n is b−1. Moreover, the

family of �′
n-convex subgroups of Γn coincides with that of �n-convex ones, that is, {id}, 〈b〉,Γn (see

[14, Remark 3.34]). The following proposition (and its proof) extends [14, Theorem D].

Proposition 4.3. The positive cone of the Dehornoy-like ordering �′
n of Γn is not finitely generated as a semi-

group.
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Proof. Following [16, Example 8.2], we will show that the sequence of conjugates bka(�′
n) converges

to �′
n in a nontrivial way. Here, bka(�′

n) is the left-ordering whose positive cone is the conjugate
bkaP�′

n
(bka)−1 of P�′

n
. Saying that bka(�′

n) converges to �′
n in a nontrivial way means that, though

bka(�′
n) does not coincide with �′

n for k large enough, given finitely many �′
n-positive elements

c1, . . . , cr , these elements are also positive with respect to bka(�′
n) for k large enough. Such a conver-

gence implies that the positive cone of �′
n cannot be finitely generated. Indeed, if it were generated

by c1, . . . , cr , then these elements would be positive for bka(�′
n) for k large enough. This would imply

that bka(�′
n) coincides with �′

n for large k, which is a contradiction.
If ci does not belong to 〈b〉, then ci may be written in the form ci = bn0 aw̄ for some n0 ∈ Z and a

certain w̄ containing no negative power of a. We then have

(
bka

)−1
cib

ka = a−1b−k+n0aw̄bka.

For k > n0, the relation a−1b−1a = an−1b yields

(
bka

)−1
cib

ka = (
an−1b

)k−n0 w̄bka.

The right-side expression above contains only positive powers of a, thus showing that ci is positive
with respect to bka(�′

n) provided that k > n0.
If ci belongs to 〈b〉, then ci = b−r for some r ∈ N. This yields

(
bka

)−1
cib

ka = a−1b−kb−rbka = a−1b−ra = (
an−1b

)r
.

The right-side expression contains only positive powers of a, hence it is �′
n-positive.

Finally, to show that bka(�′
n) and �′

n do not coincide, it suffices to notice that the smallest positive
element of the former ordering, namely (bka)−1b−1bka = a−1b−1a, is different from b−1, which is the
smallest positive element of �′

n . �
Remark 4.4. The very same argument of the proof above shows that bka(�n) also converges to �′

n as
k goes to infinity.

Another relevant property of the Dehornoy ordering on B3 is the so-called Property S: All conju-
gates of σ1 and σ2 are �D -positive. We were not able to reprove this property with our methods.
More importantly, we do not know whether an analog of this property holds for all Dehornoy-like
orderings.

5. Some questions and comments

One may address plenty of questions on the structure of the groups Γn . However, we would like
to focus on certain aspects related to group orderability.

C -orderability and local indicability. Let us recall that a group is said to be C-orderable if it admits
a left-ordering � satisfying f gk � g for all f , g positive and all k � 2 (see [14]). Such an ordering is
said to be Conradian. A remarkable theorem of Brodskii [2] asserts that torsion-free, 1-relator groups
are C-orderable. Indeed, such a group is necessarily locally indicable [2,12] (that is, each of its finitely
generated subgroups surjects into Z), and local indicability is equivalent to C-orderability (see [14,
§3] for a discussion on this point).
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Now notice that, since the groups Γn are left-orderable, they are torsion-free. (This also follows
from [3].) By the discussion above, they are C-orderable.5 For example, the local indicability of
B3 ∼ Γ2 comes from the well-known exact sequence

0 → [B3, B3] ∼ F2 → B3 → B3/[B3, B3] ∼ Z → 0

and the fact that free groups are locally indicable (this last result goes back to Magnus [13]). We point
out, however, that the orderings �n and �′

n are not Conradian (for n > 1):

– For �n , notice that a �n id and b �n id, though a−1ban = b−1 ≺n id, thus ban ≺n a.
– For �′

n , we have ab2 �′
n id and ab �′

n id. Now from a−1ba = b−1a−(n−1) we obtain

(ab)−2(ab2)(ab)4 = b−1a−1bab(ab)3 = b−1b−1a−(n−1)b(ab)3

= b−2a−(n−2)a−1bab(ab)2

...

= b−2a−(n−2)b−1a−(n−2)b−1a−(n−2)b−1a−(n−1)b ≺′
n id,

hence ab2((ab)2)2 ≺′
n (ab)2.

As a more sophisticated argument, let us mention Conradian orderings with finitely many convex
groups (cf. Lemma 4.1) may only exist on solvable groups (see for instance [15, §1.3]), and the groups
Γn (with n > 1) are non-amenable (to see this, just notice that the actions on the circle constructed
in Section 3 have no invariant probability measure).

Other positive cones generated by two elements. It is interesting to compare the groups Γn with
the Baumslag–Solitar groups B S1,n = 〈a,b: b−1anb = a〉. Indeed, B S1,n is locally indicable (hence
C-orderable), admits uncountably many left-orderings, but only four C-orderings (all of which are
bi-invariant). Actually, this is nearly a characterization of these groups (see [18]). This gives some
“evidence” for a positive answer to the following

Main Question. Let Γ be a group admitting a left-ordering whose positive cone is generated by (no
more than) two elements. Is Γ isomorphic to either Z or Γn for some n � 1?

Notice that the group Γm,n = 〈a,b: banb = am〉 is isomorphic to Γm+n−1 for all positive m,n, thus
it belongs to the family above. Indeed, the relator of Γm,n may be written as (ban−1)−1am+n−1 ×
(ban−1)−1 = a.

Positive cones generated by k > 2 elements. According to [9], for each n � 1, the braid group Bn

admits a left-ordering whose positive cone is generated by n − 1 elements, namely

σ1σ2 · · ·σn−1, (σ2σ3 · · ·σn−1)
−1,σ3σ4 · · ·σn−1, . . . , (σn−1)

(−1)n
.

Once again, the proof of this fact given in [9] uses Dehornoy’s theory. We were not able to extend
our approach to simplify and/or generalize this phenomenon. One of the difficulties lies in that, with
the generators above, the natural presentations of Bn are not Garside. We expect, however, that some
alternative approach should yield an answer for the following

5 Notice that the C -orderability of Γn does not follows from that it embeds into P̃SL(2,R). Indeed, P̃SL(2,R) contains finitely
generated groups with trivial first cohomology, as for example the lifting of the (2,3,7)-triangle group [1,20].
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Main Problem. For each k > 3, find an infinite family of groups (including both Bk−1 and the Tararin
groups Tk from [18, §4.2]) all of which admit left-orderings with a positive cone generated (as a
semigroup) by k elements.
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