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Nielsen–Thurston orders and the space of braid orderings

Andrés Navas and Bert Wiest

Abstract

We study the topological space of left-orderings of the braid group, and its subspace of Nielsen–
Thurston orderings. Our main result is that no Nielsen–Thurston ordering is isolated in the space
of braid orderings. In the course of the proof, we classify the convex subgroups and calculate
the Conradian soul for any Nielsen–Thurston ordering of Bn. We also prove that, for a large
class of Nielsen–Thurston orderings, including all those of infinite type, a stronger result holds:
they are approximated by their own conjugates. On the other hand, we suggest an example of a
Nielsen–Thurston ordering that may not be approximated by its conjugates.

1. Introduction

In recent years, some progress in the theory of orderable groups has been achieved by studying
the so-called space of orderings (throughout, the word ordering stands for a left-invariant total
order relation on a group). This corresponds to the set of all orderings that may be defined
on a given group Γ, and carries a natural topology: given finitely many group elements, a
neighbourhood of a prescribed ordering ≺ is the set of all orderings that coincide with ≺ on
this finite set. It is easy to see that this space is totally disconnected and compact; moreover,
it is metrizable when the underlying group is countable [10]. It is a non-trivial fact that this
space cannot be countably infinite [7, 8]. Note that an isolated point in this space corresponds
to an ordering that is completely determined by finitely many inequalities.

Remarkable examples of orderable groups are the braid groups Bn. Historically, the first
ordering on Bn (for n � 3) was defined by Dehornoy. It was shown in [7] that the Dehornoy
ordering ≺D is non-isolated in the space of braid orderings. This is to be contrasted with
the work [5], where Dubrovina and Dubrovin show, by means of a slight modification of the
Dehornoy construction, that Bn admits isolated orderings. For example, on B3 there is a unique
ordering ≺DD verifying the inequalities σ1σ2 �DD1 and σ−1

2 �DD1.
Dehornoy’s construction involves some deep ideas that are purely algebraic. However, there is

an alternative geometric approach to braid orderability. Indeed, ≺D can be seen as a particular
member of a family of uncountably many orderings which arises from the natural action of Bn

on the real line. Each of the orderings in this family is associated to a completely separating
geodesic of the punctured disc (endowed with a hyperbolic metric). These so-called Nielsen–
Thurston orderings on braid groups were largely studied and classified by Short and Wiest
in [9]. In the present paper, we pursue this study from the point of view of the space of
orderings. Our main result may be stated as follows (c.f. Theorem 8.1 below).

Theorem. No Nielsen–Thurston ordering is isolated in the space of braid orderings.

We recall that the positive cone of an ordering is the semigroup consisting of elements greater
than the identity. As a direct consequence of this theorem and [7, Proposition 1.8] we have the
following corollary.

Received 14 April 2010; revised 10 June 2010; published online 12 May 2011.

2010 Mathematics Subject Classification 20F36, 20F60, 06F15.

The first author was funded by PBCT-CONICYT Research Network on Low Dimensional Dynamics.



902 ANDRÉS NAVAS AND BERT WIEST

Corollary. There is no Nielsen–Thurston ordering whose positive cone is finitely
generated as a semigroup.

To show the theorem, we first determine the convex subgroups of Nielsen–Thurston orderings
(where a subset S is said to be convex if g ∈ S whenever f1 ≺ g ≺ f2 and both f1, f2 are in
S). We prove that the only convex subgroups are the obvious ones, coming from the way in
which the geodesic cuts up the surface. For example, for the Nielsen–Thurston orderings of
full infinite type (to be defined below), we prove that there are no convex subgroups other
than {1} and Bn. This yields an affirmative answer to the second half of Question 2.21 in
[4, Chapter XVI].

With the whole list of convex subgroups at hand, for each Nielsen–Thurston ordering we
determine the Conradian soul, that is, the maximal convex subgroup restricted to which the
ordering satisfies the so-called Conrad property. This notion was introduced by Navas as a
tool for studying the possibility of approximating a given ordering by its conjugates (where the
conjugate of an ordering ≺ by a group element h is the ordering ≺h for which f ≺h g if and
only if h−1fh ≺ h−1gh). For example, by [7] every ordering on a countable group having trivial
Conradian soul may be approximated by its conjugates. As a consequence, Nielsen–Thurston
orderings of full infinite type can be approximated by their conjugates.

For Nielsen–Thurston orderings whose Conradian soul is isomorphic to Z (as is the case
of the Dehornoy ordering), we show that the property of accumulation by its conjugates still
holds. In the rest of the cases, we show that the Conradian soul is isomorphic to Zk for some
k � 2. Although we ignore whether these orderings may be approximated by their conjugates
(actually, we present evidence that some of them might be isolated in the ‘space of Nielsen–
Thurston orderings’), we show that they are not isolated in the space of braid orderings. This
is achieved by means of a classical and very simple convex extension-type argument.

2. A brief reminder on Nielsen–Thurston orderings

Nielsen–Thurston orderings of Bn, which were introduced in [9], are the total orderings arising
from the natural action of Bn on the open interval ]0, π[.

We briefly recall the definition. Let Dn denote the unit disc, with n punctures lined up on
the horizontal diameter. We can equip Dn with a hyperbolic structure (in which the punctures
correspond to cusps). Indeed, many such hyperbolic structures exist, but we fix one choice, for
the rest of the paper.

A Nielsen–Thurston ordering is, by definition, induced by a finite or infinite geodesic
ray γ : [0, T ] → Dn (with T ∈ R+) or γ : [0,∞[→ Dn, starting at a base point on the boundary
of Dn, and (in the case of a finite ray) terminating at some other point of ∂Dn.

The ordering induced by γ is defined as follows. Any geodesic starting on the base point in
∂Dn has in its starting point a certain angle, belonging to the interval (0, π), with the boundary
∂Dn. Conversely, the geodesic is uniquely determined by the value of this angle. More generally,
even a non-geodesic ray starting on the base point is homotopic, relative to its end points, to
a unique geodesic, so homotopy classes of such rays are still in one-to-one correspondence with
angles in (0, π). Now the braid group, viewed as the mapping class group of Dn, acts on the
geodesic γ; this yields a partial ordering ≺ of Bn, by defining that β1 ≺ β2 if and only if the
angle of β1.γ is smaller than the angle β2.γ.

If γ is not invariant under the action of any braid, then this recipe determines a total
ordering of Bn, and this ordering is called the Nielsen–Thurston ordering induced by γ. Note
that a necessary (but not sufficient) condition for γ not being invariant under any braid action is
that γ cuts up the surface, in the sense that no two punctures are in the same path components
of Dn − γ([0, T ]).
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An important property of Nielsen–Thurston orderings is the so-called subword property,
or property S. This means that, for any two braid words w and w′, where w′ is obtained
from w by inserting positive generators σi, we have: w ≺ w′. Geometrically, this is nothing
but the fact that the left half-twist along any arc connecting two punctures pushes any curve
intersecting the arc further to the left. In particular, this half-twist is a positive element for
the ordering.

The properties of the Nielsen–Thurston orderings are closely related to the geometric nature
of the corresponding geodesic. Let us consider, for a maximal m ∈ {0, 1, . . . , n − 1}, the m
points in time t1, . . . , tm such that some pair of punctures is in the same path component
of Dn − γ([0, ti − ε]), but in separate path components of Dn − γ([0, ti]). We shall call this the
sequence of separating moments.

If m = n − 1, that is, if a finite initial segment of γ is sufficient to cut up the surface, then
the ordering is said to be of finite type. If m < n − 1, then the ordering is of infinite type. If
m = 0, that is, if γ has no self-intersections and no finite initial segment of γ separates any
pair of punctures, then we say the ordering is of full infinite type.

3. Convex subgroups of Nielsen–Thurston orderings of finite type

Theorem 3.1. Suppose that ≺ is a Nielsen–Thurston ordering of finite type, associated to
a geodesic γ. Let 0 < t1 < t2 < . . . < tn−1 be the sequence of separating moments of γ. Then
the chain of convex subgroups is

{1} ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ Bn,

where Gi denotes the subgroup of Bn consisting of all braids that preserve the geodesic segment
γ([0, ti]).

Proof. It is immediate that the subgroups thus described are convex, and we only have to
prove that they are the only ones.

The proof is by downward induction. The start of the induction is with the cases where all
components of Dn − γ([0, tn−i]) contain at most two punctures. In these cases, the subgroup
consisting of elements of Bn leaving γn−i invariant is isomorphic to Zi, and is lexicographically
ordered. Such an ordered group has no convex subgroups except the ones obtained by
successively removing the largest generator, and these subgroups do indeed appear in the
chain of convex subgroups Gn−1 ⊂ . . . ⊂ Gn−i.

Let us now suppose inductively that, for some index i, there are no convex subgroups in Gn−i

except Gn−j with j < i. Let G′ be a convex subgroup of Gn−i−1 such that Gn−i � G′ ⊂ Gn−i−1.
Our aim is to prove that G′ = Gn−i−1.

Let us recall the structure of the group Gn−i−1: the geodesic γ([0, tn−i−1]) cuts Dn into
a number of components, some of which contain punctures. If we denote by n1, . . . , nk the
number of punctures contained in each of these path components, then the subgroup Gn−i−1

is isomorphic to a product Gn−i−1
∼= Bn1 × . . . × Bnk

. Moreover, there is exactly one connected
component of Dn − γ([0, tn−i−1]) which is further cut by γ([tn−i−1, tn−i]) into pieces one
of which contains λ punctures and another one μ punctures (with λ, μ � 1, and at least one of
the two being at least 2). Without loss of generality, let us say the component being cut is the
first one, so that n1 = λ + μ.

Now there are three discs with geodesic boundary contained in the region under discussion:
one containing λ punctures, one containing μ punctures, and one containing both sets of
punctures. Possibly after a conjugation, we can assume that the three discs are round (that is,
their boundaries intersect the horizontal diameter only twice; see Figure 1).
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Figure 1. Fat lines: γ([0, tn−i−1]). Dashed line: γ([tn−i−1, tn−i]).

We shall study the action of the hypothetical subgroup G′ on the geodesic γ([0, tn−i]), keeping
in mind that it fixes the initial segment γ([0, tn−i−1]). Let

γmax = sup
g′∈G′

g′.γ

(where the supremum is in the sense that every geodesic corresponds to a point of the real
line, and we are taking the supremum of real numbers). What does the first intersection of
γmax with our critical component of Dn − γ([0, tn−i−1]) look like? Note that γmax must be
G′-invariant.

The geodesic segment γmax cannot pass between two punctures among the λ punctures of the
left disc, nor can it pass between two of the μ punctures of the right disc, for if it did, then
the action of an appropriate element in the smaller convex subgroup Bλ or Bμ would displace
the geodesic even further to the left, which is excluded by construction (see Figure 2(a)).

Figure 2. The geodesic segment γmax.
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Suppose, on the other hand, that γmax avoids entirely the two discs with geodesic boundary
containing the set of λ or μ punctures, but intersects the horizontal segment between the two
discs. Then we have g′.γmax > γmax or (g′)−1.γmax > γmax, where g′ is any element of G′ that
moves the segment γ([tn−i−1, tn−i]) (such an element must exist, since Gn−i � G′). This is also
impossible.

In summary, the geodesic γmax remains disjoint from the disc with geodesic boundary
containing the λ + μ punctures; thus, it spirals onto its boundary, as indicated in Figure 2(b).
But this means that g′.γ can get as big (far to the left) as any geodesic g.γ with g ∈ Gn−i−1.
This implies that G′ = Gn−i−1.

4. Convex subgroups of Nielsen–Thurston orderings of full infinite type

We recall that a geodesic ray γ in Dn gives rise to an ordering of full infinite type if it starts at
the base point in ∂Dn, has no self-intersections, separates the punctures, and is not stabilized
by any non-trivial element of Bn.

The next result should be compared with [2].

Theorem 4.1. Suppose that γ is an infinite geodesic ray in Dn giving rise to a Nielsen–
Thurston ordering ≺ of Bn of full infinite type. Then ≺ has no convex subgroups except {1}
and Bn.

Proof. The strategy is to prove that Bn can be generated by elements which are ‘arbitrarily
close to the identity’, which implies that any non-trivial convex subgroup contains all of Bn.

Here are the details. The geodesic γ can be specified by an infinite word, where the kth
letter (k ∈ N) specifies between which pair of punctures of Dn the kth intersection of γ with
the horizontal diameter occurs, and in which direction (up or down).

We shall prove that the braid group can be generated by n − 1 elements τ1, . . . , τn−1 that all
leave an arbitrarily long initial segment of γ invariant: the words describing τi.γ all coincide
with the word describing γ on an arbitrarily long initial segment.

Here is the construction of the elements τi: we trace out the geodesic γ, for at least the whole
required initial segment, and continue until we pass close to a puncture (so close that the line
we have drawn so far does not intersect the short segment from our current position to the
puncture). At that moment, we deviate from the geodesic γ, and drop into the puncture. We
replace the curve we have just drawn by a geodesic which is homotopic to it relative to its end
points, and call this geodesic γ′. The puncture at its end will be called the central puncture.
Let k be the number of intersections of γ′ with the horizontal diameter (not counting the final
drop into the central puncture).

There are geodesic arcs a1, . . . , an−1 disjoint from γ′ and from each other, connecting the
central puncture to the n − 1 other punctures. For later use, we shall equip these arcs with an
orientation pointing towards the central puncture. The braid τi will be a positive or negative
half Dehn-twist around the arc ai (the sign remains to be specified, depending on the relative
position of terminal segments of γ′ and ai).

We shall consider three cases. First, if the last intersections of these two arcs with the
horizontal diameter do not occur between the same pairs of punctures, then the sign of the
half Dehn twist can be chosen arbitrarily. Indeed, in this case the first k intersections of τi.γ
with the horizontal diameter coincide with those of γ, independently of whether τi is taken to
be the positive or negative half-twist along ai; see Figure 3(a).

The second case to consider is where the last intersections of the the arcs γ′ and ai with the
horizontal diameter lie between the same pairs of punctures, and where, moreover, the terminal
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Figure 3. Construction of the generators τi.

segment of ai lies to the right of the terminal segment of γ′ (as seen while approaching the
central puncture along γ′); see Figure 3(b) for examples. In this case, we take τi to
be the positive half-twist along ai. Again, we observe that with this choice the word describing
the first k intersections of τi.γ with the horizontal diameter coincides with the corresponding
word for γ.

The third and final case is where the last intersections of the arcs γ′ and ai with the horizontal
diameter lie between the same pairs of punctures, and where the terminal segment of ai lies
to the left of the terminal segment of γ′. In this case, we take τi to be the negative half-twist
along ai; see Figure 3(c).

5. Convex subgroups of general Nielsen–Thurston orderings

Theorem 5.1. Suppose that ≺ is a Nielsen–Thurston ordering, associated to a geodesic γ.
Let 0 < t1 < t2 < . . . < tm, with m ∈ {0, 1, . . . , n − 1}, be the sequence of separating moments
of γ. Then the chain of convex subgroups is

{1} ⊂ Gm ⊂ . . . ⊂ G1 ⊂ Bn,

where Gi denotes the subgroup of Bn consisting of all braids that preserve the geodesic segment
γ([0, ti]).

Proof. The only case that remains to be proved is if γ is a geodesic of infinite, but not fully
infinite type (that is, if m ∈ {1, . . . , n − 2}). As in the proof of Theorem 3.1, we see that there
are no convex subgroups between Gi and Gi−1, for i = 1, . . . , m.

Now let us look at the path components of Dn − γ([0, tm]) that are non-trivial (that is,
contain at least two punctures). If ever the path γ([tm,∞[) enters into one of these components
and exits it again some time later, then this arc of intersection does not cut the component
into two components both of which contain a puncture; in particular, this arc does not have
any self-intersections. However, since γ must separate all punctures, we conclude that there
was only one non-trivial path component of Dn − γ([0, tm]), which we denote by D∗. Moreover,
there is a moment t∗ (with t∗ � tm) when γ enters into D∗ and never leaves it again, never
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self-intersects again, but separates all the remaining punctures. Thus, γ([t∗,∞[) is a geodesic
of fully infinite type in D∗. So, as in the proof of Theorem 4.1, there is no convex subgroup
between {1} and Gm.

6. The Conradian soul of Nielsen–Thurston orderings

Recall that a group ordering ≺ is said to be Conradian if, for every positive f and g there exists
k ∈ N so that fgk � g (see [1, 6]). Using structure theorems for Conrad orderable groups and
the description of the convex subgroups from the previous sections, one can easily show that no
Nielsen–Thurston ordering is Conradian (cf. Corollary 6.4). However, we prefer giving a longer
proof which avoids these structure theorems. In this proof, the cases of finite-type orderings
on B3 and B4 need a special argument (cf. Remark 6.5).

Example 6.1. The Dehornoy ordering ≺D on B3 is not Conradian. This is shown in
[7, Example 3.21], through a very indirect argument. A shorter proof works as follows: using
the identity σ2σ1σ

−1
2 = σ−1

1 σ2σ1, we get, for all k ∈ N, that 1 ≺D σ2σ1σ
−(k+1)
2 = σ

−(k+1)
1 σ2σ1.

Therefore, (σ−1
2 σ1)(σk

1 ) ≺D σ1 for all k ∈ N, yet both σ−1
2 σ1 and σ1 are ≺D-positive.

Note that, according to [9], every Nielsen–Thurston ordering of finite type on B3 is conjugate
to the Dehornoy ordering. Since the Conrad property is stable under conjugacy, no Nielsen–
Thurston ordering of finite type on B3 is Conradian.

Example 6.2. Up to conjugacy, there are only three Nielsen–Thurston orderings of finite
type on B4, namely, those given by the geodesics of Figure 4 below (see again [9]). None of
them gives rise to a Conradian ordering. Indeed, (a) corresponds to the Dehornoy ordering,
and the above argument applies. For the geodesics in (b) and (c), one can directly check the
inequality 1 ≺ σ3σ2σ

−(k+1)
3 , which allows to conclude as in the previous example.

Following [7, 8], the Conradian soul of an ordering is defined as the maximal convex
subgroup restricted to which the order satisfies the Conrad property. It was already shown in
[7] that the Conradian soul of the Dehornoy ordering on Bn corresponds to 〈σn−1〉. Next, we
describe the Conradian soul of any Nielsen–Thurston ordering, thus solving a problem raised in
[7, Remark 3.40].

Theorem 6.3. The Conradian soul of a Nielsen–Thurston ordering on Bn corresponds to
the maximal Abelian convex subgroup, that is, to the largest copy of B2 × . . . × B2 that is
convex.

Figure 4. The three conjugacy classes of finite-type Nielsen–Thurston orderings of B4.
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Proof. For a geodesic of infinite type, the smallest non-trivial convex subgroup is a copy of
Bm for some m with 3 � m � n. Such a group has no convex subgroup. If it was Conradian,
then it would be Archimedean, and hence by Hölder’s theorem, the underlying group would
be Abelian (see [1, 6]). This is absurd as Bm, for m � 3, is not Abelian.

If the geodesic is of finite type, then it is clear that the maximal convex copy of a product
of (say, k) B2 factors is contained in the Conradian soul (indeed, any bi-invariant ordering,
and thus any ordering defined on an Abelian group, is Conradian). The next larger convex
subgroup of Bn corresponds either to a product P = Bn1 × . . . × Bnk−1 , where there is only
one index different from 2, which is equal to 4, or to a product P = Bn1 × . . . × Bnk

, where
only one index is different from 2, and it is equal to 3. If the restriction of the ordering to P was
Conradian, then the restriction to B4 or B3, respectively, would be also Conradian. However,
we have seen in Examples 6.1 and 6.2 that this cannot be the case.

An alternative argument for the end of the proof. To see that the restriction of the ordering
to P cannot be Conradian, first note that P has only finitely many convex subgroups. By
[8, Proposition 1.7] and its proof, if P was Conradian, then the underlying group would be
solvable. However, neither B3 nor B4 are solvable.

Corollary 6.4. No Nielsen–Thurston ordering is Conradian.

Proof. If a Nielsen–Thurston ordering was Conradian, then it would coincide with its
Conradian soul. However, according to Theorem 6.3, this is never the case.

Remark 6.5. Although stated for Nielsen–Thurston orderings on general braid groups Bn

(with n � 3), the preceding corollary gives new information only in the cases of B3 and B4.
Indeed, these groups do admit Conradian orderings, whereas for n � 5 there is no Conradian
ordering on Bn at all (see [4, pp. 287–289]).

7. Nielsen–Thurston orderings of infinite type are approximated by their conjugates

The relevance of the Conradian soul stems from the following result which we cite from
[7, Proposition 4.7] (see also [3, Theorem 1.2; 8, Theorem 2.7]).

Theorem 7.1. If the Conradian soul of an ordering on an infinite countable group is trivial,
then this ordering is an accumulation point of its conjugates.

Using this result, we may easily prove the following theorem.

Theorem 7.2. Any Nielsen–Thurston ordering of infinite type on Bn may be approximated
by its conjugates.

Proof. By Theorem 6.3, the Conradian soul of the ordering is trivial. The result then follows
from Theorem 7.1.

8. Nielsen–Thurston orderings of finite type are not isolated

We now show our main result.
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Theorem 8.1. Nielsen–Thurston orderings are not isolated in the topological space of
left-invariant orderings of Bn.

Proof. In the case of orderings of infinite type, the ordering may be approximated by its
conjugates (see Theorem 7.2).

In the finite-type case, for a maximal value of k there exists a convex subgroup of the form
B2 × . . . × B2 ∼ Zk. If k � 2, then the restriction of ≺ to Zk is not isolated in the space of
orderings of Zk (see, for instance, [10]). A convex extension argument (see [7, Section 3.3.5])
then shows that ≺ is not isolated in the space of braid orderings. If k = 1, then the smallest
convex subgroup strictly containing the maximal Abelian convex subgroup B2 is a copy of B3.
By [9], the restriction of ≺ to this copy of B3 is a conjugate of the Dehornoy ordering, which
is not isolated in the space of orderings of B3; see Example 8.2 below. Once again, a convex
extension argument shows that ≺ is not isolated in the space of braid orderings.

Example 8.2. Dehornoy’s ordering is approximated by its conjugates. This was first shown
in [7] through a very indirect argument. A simpler proof appears in [4, Chapter XIV]. Here we
propose an even simpler argument.

Let ≺j be the Dehornoy ordering, conjugated by σ−j
2 σ1. Thus, a word w is positive in the

ordering ≺j if and only if σ−1
1 σj

2wσ−j
2 σ1 �D 1. We claim that the sequence ≺j tends to ≺D in

the space of orderings.
Indeed, if w = σk

2 for some k > 0, then σ−1
1 σj

2wσ−j
2 σ1 �D 1 since the Dehornoy order has

Property S. If, on the other hand, w is a σ1-positive word: w = σk1
2 σ1σ

k2
2 σ1 . . . σ

k�−1
2 σ1σ

k�
2 , then

we calculate

σ−1
1 σj

2wσ−j
2 σ1 = σ−1

1 σj
2σ

k1
2 σ1σ

k2
2 σ1 . . . σ

k�−1
2 σ1σ

k�
2 σ−i

2 σ1

= σ2σ
j+k1
1 σ−1

2 σk2
2 σ1 . . . σ

k�−1
2 σ1σ

k�
2 σ−n

2 σ1.

Thus, σ1σ
−j
2 wσj

2σ1 is σ1-positive for sufficiently large j (namely for j > −k1), which proves
the desired convergence.

Finally, ≺j is different from ≺D for all positive integers j, since its smallest positive element
is the conjugate of σ2 by σ−j

2 σ1, and this is different from σ2.

Remark 8.3. The choice of the sequence σ−j
2 σ1 is quite natural. Indeed, the sequence

σ−j
2 σ1 approaches the Conradian soul from above: for any element c of the Conradian soul 〈σ2〉

and for any σ1-positive word w, we have c ≺D σ−j
2 σ1 ≺D w, where the second inequality is only

true for sufficiently large j. In terms of geodesics, if γ is the standard geodesic inducing the
Dehornoy-order on B3 (cf. Figure 4(a)), then the sequence of geodesics σ−j

2 σ1.γ is eventually
further to the right than any prescribed geodesic β.γ, for β a σ1-positive braid; see Figure 5.

Example 8.2 can be generalized as follows.

Theorem 8.4. Every Nielsen–Thurston ordering ≺ of finite type whose Conradian soul is
a copy of B2 can be approximated by its conjugates.

Proof. If σ is a positive generator of the Conradian soul, then σ corresponds to a left
half-twist. According to [7, Proposition 4.9] and its proof (see also [8, Theorem 2.9] and its
proof), there exists a sequence ≺j= gj(≺) of conjugates of ≺ which converges either to ≺ or
to ≺′, where ≺′ is the ordering whose set of positive elements is the union of {σk : k < 0} and
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Figure 5. The geodesic σ−j
2 σ1.γ deviates from γ to the left, but ‘by as little as possible’: it

goes ‘over’ the left-most puncture (thus deviating to the left), but then it goes as much to the
right as possible (it turns j times counterclockwise around the two right-most punctures, with j
arbitrarily large).

{g : g � 1, g /∈ 〈σ〉}. If the limit point was ≺′, then the conjugates g−1
j σgj would be negative

for j large enough. This contradicts the fact that the Nielsen–Thurston ordering ≺ has the
subword property S.

Remark 8.5. The argument of the proof above actually shows the stronger result that, for
any given Nielsen–Thurston ordering of finite type ≺, there exists another finite-type Nielsen–
Thurston ordering ≺1, obtained from the given one simply by permuting the lexicographic
order of the Conradian soul, which is approximated by conjugates of itself (cf. [7, Proposition
4.9; 8, Corollary 2.10]).

The previous results show that the only Nielsen–Thurston orderings that may fail to be
approximated by their conjugates are those of finite type whose Conradian soul is higher-rank
Abelian.

Example 8.6. Consider the ordering ≺ induced by the geodesic shown in Figure 6(a).
The Conradian soul of this ordering is 〈σ1, σ3, σ5〉 = Z3. By Theorem 8.1, this order can be
approximated by other orders, but we do not know whether it can be approximated by its
conjugates. Imitating Example 8.2 and the proof of Theorem 8.4, we could try to conjugate
the order by elements that are as small as possible while being larger than all elements of the
Conradian soul. This, however, yields an approximation not of the desired ordering ≺, but of
one where the lexicographic order of Z3 has been permuted.

Figure 6. (a) A geodesic whose associated ordering of B6 seems not to be a limit
point of Nielsen–Thurston orderings. Note the convex subgroups 〈σ5〉 ⊆ 〈σ3, σ5〉 ⊆ 〈σ1, σ3, σ5〉.
(b) Conjugating by σ−N

3 σ4 (a sequence that becomes eventually smaller than any positive element
outside the Conradian soul) yields an approximation of a different ordering with convex jumps
〈σ1〉 ⊆ 〈σ1, σ5〉 ⊆ 〈σ1, σ3, σ5〉.
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Question. Can the ordering induced by the geodesic of Figure 6(a) be approximated by
its conjugates? If not, can it be approximated by a sequence of Nielsen–Thurston orderings?
The calculation above suggests that the answer to both questions may be ‘no’.
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