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Introduction

In recent years, the well developed theory of orderable groups has re-emerged, mainly
due to its connections with many different branches of mathematics. One of the as-
pects which has been emphasized is that, in general, orderable groups actually admit
many invariant total order relations. This makes natural the problem of searching for
an ordering satisfying a nice property implying a relevant algebraic (or dynamical)
property of the underlying group. This issue has been successfully exploited for in-
stance by Witte Morris in his beautiful proof of the local indicability for left-orderable
amenable groups [10]. The reader is referred to [11] for other applications of this
approach.

A closely related problem concerns the description of all (invariant) orderings
on particular classes of groups. In this direction, Tararin’s concise classification of
groups admitting only finitely many left-orderings corresponds to a relevant piece of
the theory [6]. Another significant (and easier) result is the description of all possible
orderings on torsion-free finite rank Abelian groups [14], [15], [17].

Although the description of all orderings seems to be out of reach for general
orderable groups, one may address the weaker question of the description of the
corresponding space of orderings from a topological viewpoint (recall that the space
of orderings on any space corresponds to the projective limit of the orders on finite
sets, and hence carries the structure of a compact topological space). For instance,
ruling out the existence of isolated points in this space (that is, orderings which are
completely determined by finitely many inequalities) appears to be a fundamental
question. This has been done for example for the spaces of left-orderings of finitely
generated torsion-free nilpotent groups which are not rank 1 Abelian [11], [15]. For



2 A. Navas and C. Rivas

the free group Fn (where n � 2), it is known that there is no isolated point in the
corresponding space of left-orderings [7], [11], [16]. The similar question for the
space of bi-orderings on Fn remains open, and though it is not treated here, it inspires
much of this work.

In this article, we focus on a remarkable bi-orderable group, namely Thompson’s
group F , and we provide a complete description of all its possible bi-orderings. Recall
that F is the group of orientation-preserving piecewise-linear homeomorphisms f

of the interval Œ0; 1� such that:

� the derivative of f on each linearity interval is an integer power of 2,
� f induces a bijection of the set of dyadic rational numbers in Œ0; 1�.

For each non-trivial f 2 F we will denote by x�
f

(resp. xC
f

) the leftmost point x�

(resp. the rightmost point xC) for which f 0C.x�/ ¤ 1 (resp. f 0�.xC/ ¤ 1), where
f 0C and f 0� stand for the corresponding lateral derivatives. One can then immediately
visualize four different bi-orderings on (each subgroup of) F , namely:

� the bi-ordering �C
x� for which f � id if and only if f 0C.x�

f
/ > 1,

� the bi-ordering ��
x� for which f � id if and only if f 0C.x�

f
/ < 1,

� the bi-ordering �C
xC for which f � id if and only if f 0�.xC

f
/ < 1,

� the bi-ordering ��
xC for which f � id if and only if f 0�.xC

f
/ > 1.

Although F admits many more bi-orderings than these, the case of its derived sub-
group F 0 is quite different.

Theorem (V. Dlab). The only bi-orderings on F 0 are �C
x� , ��

x� , �C
xC and ��

xC .

Dlab’s arguments apply to many other (in general, non finitely generated) groups
of piecewise-affine homeomorphisms of the line. Some of them appear to be non-
Abelian, though having only two different bi-orderings (compare Remark 1.6). We
refer to the original reference [5] for all of this (see also [6], [8], [9], [18]). Here
we provide a new proof using an argument which allows us to obtain the complete
classification of all the bi-orderings on F .

Note that there are also four other “exotic” bi-orderings on F , namely:

� the bi-ordering �C;�
0;x� for which f � id if and only if either x�

f
D 0 and

f 0C.0/ > 1, or x�
f

¤ 0 and f 0C.x�
f

/ < 1,

� the bi-ordering ��;C
0;x� for which f � id if and only if either x�

f
D 0 and

f 0C.0/ < 1, or x�
f

¤ 0 and f 0C.x�
f

/ > 1,

� the bi-ordering �C;�
1;xC for which f � id if and only if either xC

f
D 1 and

f 0�.1/ < 1, or xC
f

¤ 1 and f 0�.xC
f

/ > 1,

� the bi-ordering ��;C
1;xC for which f � id if and only if either xC

f
D 1 and

f 0�.1/ > 1, or xC
f

¤ 1 and f 0�.xC
f

/ < 1.
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Remark that, when restricted to F 0, the bi-ordering �C;�
0;x� (resp. ��;C

0;x� , �C;�
1;xC , and

��;C
1;xC) coincides with ��

x� (resp. �C
x� , ��

xC , and �C
xC). Let us denote the set of the

previous eight bi-orderings on F by BOIsol.F /.
There is another natural procedure for creating bi-orderings on F . For this, recall

the well-known (and easy to check) fact that F 0 coincides with the subgroup of F

formed by the elements f satisfying f 0C.0/ D f 0�.1/ D 1. Now let �Z2 be any
bi-ordering on Z2, and let �F 0 be any bi-ordering on F 0. It readily follows from
Dlab’s theorem that �F 0 is invariant under conjugacy by elements in F . Hence, one
may define a bi-ordering � on F by declaring that f � id if and only if either f … F 0
and .log2.f 0C.0//; log2.f 0�.1/// �Z2 .0; 0/, or f 2 F 0 and f �F 0 id.

All possible ways of ordering finite rank Abelian groups have been described in
[14], [15], [17]. In particular, when the rank is greater than 1, the corresponding
spaces of bi-orderings are homeomorphic to the Cantor set. Since there are only
four possibilities for the bi-ordering �F 0 , the preceding procedure gives four natural
copies (which we will coherently denote by ƒC

x� , ƒ�
x� , ƒC

xC , and ƒ�
xC) of the Cantor

set in the space of bi-orderings of F . The main result of this work establishes that
these bi-orderings, together with the special eight bi-orderings previously introduced,
fill out the list of all possible bi-orderings on F .

Theorem. The space of bi-orderings of F is the disjoint union of the finite set
BOIsol.F / (whose elements are isolated bi-orderings) and the copies of the Can-
tor set ƒC

x� , ƒ�
x� , ƒC

xC , and ƒ�
xC .

The first ingredient of the proof of this result comes from the theory of Conradian
orderings [4]. Indeed, since F is finitely generated, every bi-ordering � on it admits
a maximal proper convex subgroup F max� . More importantly, this subgroup may
be detected as the kernel of a non-trivial, non-decreasing group homomorphism into
.R; C/. Since F 0 is simple (see for instance [2]) and non-Abelian, it must be contained
in F max� . The case of coincidence is more or less transparent: the bi-ordering on F is
contained in one of the four canonical copies of the Cantor set, and the corresponding
bi-ordering on Z2 is of irrational type (i.e., its positive elements are those which are
in one of the two half-planes determined by a line of irrational slope passing through
the origin). The case where F 0 is strictly contained in F max� is more complicated.
The bi-ordering may still be contained in one of the four canonical copies of the
Cantor set, but the corresponding bi-ordering on Z2 must be of rational type (e.g., a
lexicographic ordering). However, it may also coincide with one of the eight special
bi-orderings listed above. Distinguishing these two possibilities is the hardest part of
the proof. For this, we strongly use the internal structure of F , in particular the fact
that the subgroup consisting of elements whose support is contained in a prescribed
closed dyadic interval is isomorphic to F itself.

Acknowledgments. The first author would like to thank José Burillo for his expla-
nations on the group of outer automorphisms of F , as well as Adam Clay and Dale
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by the PBCT-Conicyt via the Research Network on Low Dimensional Dynamical
Systems. The second-named author was also funded by the Conicyt PhD Fellowship
21080054.

1. Some background

1.1. On group orderings. Throughout this work, the word left-ordering (resp. bi-
ordering) stands for a total order relation on a group which is invariant by left mul-
tiplication (resp. by left and right multiplication simultaneously). An element f is
said to be positive (resp. negative) with respect to some left-ordering � if f � id
(resp. f � id). The set of positive elements forms a semigroup P C� , which is
called the positive cone of �, and the whole group equals the disjoint union of P C�
together with P �� D ff j f �1 2 P C� g and fidg. Conversely, given a subsemi-
group P C of a group � such that � equals the disjoint union of P C together with
P � D ff j f �1 2 P Cg and fidg, one may realize P C as the positive cone of a left-
ordering �: it suffices to declare that f � g if and only if g�1f belongs to P C. The
resulting ordering will be bi-invariant if and only if P C is a normal subsemigroup,
that is, if gfg�1 2 P C for all f 2 P C and all g 2 � .

Every left-ordering (resp. bi-ordering) � on a group � comes together with an
associated (reverse) left-ordering (resp. bi-ordering) x� whose positive cone coincides
with P �� . Clearly, the map � 7! x� is an involution of the set of left-orderings
(resp. bi-orderings).

Example 1.1. Clearly, there are only two bi-orderings on Z. The case of Z2 is
more interesting. According to [14], [15], [17], there are two different types of bi-
orderings on Z2. Bi-orderings of irrational type are completely determined by an
irrational number �: for such an order �� an element .m; n/ is positive if and only if
�m C n is a positive real number. Bi-orderings of rational type are characterized by
two data, namely a pair .a; b/ 2 Q2 up to multiplication by a positive real number,
and the choice of one of the two possible bi-orderings on the subgroup f.m; n/ j
am C bn D 0g � Z. Thus an element .m; n/ 2 Z2 is positive if and only if either
amCbn is a positive real number, or amCbn D 0 and .m; n/ is positive with respect
to the chosen bi-ordering on the kernel line (isomorphic to Z). The description of all
bi-orderings on Zn for bigger n continues inductively. (A good exercise is to show
all of this by using Conrad’s theorem from §1.3.)

1.2. On spaces of orderings. Given a left-orderable group � (of arbitrary cardinal-
ity), we denote by LO.�/ the set of all left-orderings on � . This set has a natural
topology: a basis of neighborhoods of � in LO.�/ is the family of the sets Ug0;:::;gk

of
all left-orderings �0 on � which coincide with � on fg0; : : : ; gkg, where fg0; : : : ; gkg
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runs over all finite subsets of � . Endowed with this topology, LO.�/ is totally dis-
connected, and by (an easy application of) the Tychonov Theorem, it is compact. The
(perhaps empty) subspace BO.�/ of bi-orderings on � is closed inside LO.�/, and
hence is also compact.

If � is countable, then the above topology is metrizable: given an exhaustion �0 �
�1 � � � � of � by finite sets, for different � and �0 one may define dist.�; �0/ D 1=2n,
where n is the first integer such that � and �0 do not coincide on �n. If � is finitely
generated, one may take �n as being the ball of radius n with respect to some fixed
finite system of generators. (The metrics arising from two different finite systems of
generators are Hölder equivalent.)

By definition, an isolated point � in LO.�/ corresponds to an ordering for which
there exist g0; : : : ; gk in � such that Ug0;:::;gk

reduces to f�g. This is the case for
example if g1; : : : ; gk generate the positive cone of � as a semigroup and g0 D
id: see [11], Proposition 1.8. Analogously, � is an isolated point of BO.�/ if
Ug0;:::;gk

\ BO.�/ reduces to f�g for some g0; : : : ; gk in � . According to the
(obvious) proposition below, this happens for instance if g1; : : : ; gk generate the
positive cone of � as a normal semigroup and g0 D id (recall that a subset S of
a normal subsemigroup P of a group � generates P as a normal semigroup if P

coincides with the smallest normal subsemigroup hSiC
N of � containing S ): see

Questions 2.2 and 3.1 on this.

Proposition 1.2. Suppose that the positive cone of a bi-ordering � on a group �

is generated as a normal semigroup by elements g1; : : : ; gk . Then � is the unique
bi-ordering on � for which all of these elements are positive.

As has been observed by many people (see for example [11]), the group of auto-
morphisms Aut.�/ of a left-orderable group � acts by homeomorphisms of LO.�/:
given � 2 Aut.�/ and � in LO.�/, the image of � by � is the left-ordering ��

whose positive cone is the preimage under � of the positive cone of �. If � is bi-
orderable, then this action restricted to BO.�/ factors through the group of outer
automorphisms Out.�/.

The dynamical properties of the preceding action for general bi-orderable groups
seem interesting. For instance, the action of GL.2; Z/ on BO.Z2/ is transitive on
the set of bi-orderings of rational type, while the set of bi-orderings of irrational type
decomposes into uncountably many orbits (cf. Example 1.1).

In a similar direction, the action of Out.Fn/ could be useful for understanding
BO.Fn/. Nevertheless, in the case of Thompson’s group F , the action of Out.F /

on BO.F / is almost trivial. Indeed, according to [1], the group Out.F / contains
an index-two subgroup OutC.F / whose elements are (equivalence classes of) con-
jugacies by certain orientation preserving homeomorphisms of the interval Œ0; 1�.
Although these homeomorphisms are dyadically piecewise-affine on �0; 1Œ, the points
of discontinuity of their derivatives may accumulate at 0 and/or 1, but in some “peri-
odically coherent” way. It turns out that the conjugacies by these homeomorphisms
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preserve the derivatives of non-trivial elements f 2 F at the points x�
f

and xC
f

: this
is obvious when these points are different from 0 and 1, and in the other case this
follows from the explicit description of Out.F / given in [1]. According to our main
theorem, this implies that the action of OutC.F / on BO.F / is trivial.

The set Out.F /nOutC.F / corresponds to the class of the order-two automorphism
� induced by the conjugacy by the map x 7! 1 	 x. One can easily check that

.�C
x�/� D ��

xC ; .��
x�/� D �C

xC ; .�C;�
0;x�/� D ��;C

1;xC ; and .��;C
0;x�/� D �C;�

1;xC :

Moreover, �.ƒC
x�/ D ƒ�

xC and �.ƒ�
x�/ D ƒC

xC , and the action on the bi-orderings
of the Z2-fiber can be easily described. We leave the details to the reader.

Remark 1.3. As in the case of � , the dynamics of the involution � 7! x� can be also
easily described. However, in the case of F , this involution does not occur as the
action of any group automorphism.

1.3. On Conradian orderings. Besides BO.�/, for a left-orderable group � there
is another relevant (perhaps empty) closed subset of LO.�/, namely the subset CO.�/

formed by the left-orderings � such that g�1fg2 � id for all positive elements f , g

(see for instance [4], [11]). A left-ordering satisfying this property is said to be a C -
ordering or Conradian ordering, and a group admitting such a left-ordering is called
Conrad-orderable or simply C -orderable. Notice that every bi-invariant ordering is
Conradian.

In [4], a structure theory for Conradian orderings is given. (An alternative dynam-
ical approach appears in [11], [12].) This is summarized in the theorem below. To
state it properly, recall that a subgroup �0 of a group � endowed with a left-ordering
� is said to be �-convex if every g 2 � satisfying g1 � g � g2 for some g1, g2

in �0 actually belongs to �0. Equivalently, every h 2 � satisfying id � h � g for
some g 2 �0 is contained in �0. Notice that given any two �-convex subgroups of
� , one of them is necessarily contained in the other. Consequently, the union and the
intersection of groups in an arbitrary family of �-convex subgroups is also �-convex.

Theorem (P. Conrad). Let � be a group endowed with a C -ordering. Given g 2 � ,
denote by �g (resp. �g ) the maximal (resp. minimal) convex subgroup which does
not contain (which contains) g. Then �g is normal in �g , and there exists a non-
decreasing group homomorphism �

g
� W � ! .R; C/ whose kernel coincides with �g .

This homomorphism is unique up to multiplication by a positive real number.
Moreover, if � is finitely generated, then it contains a (unique) maximal proper �-

convex subgroup �max D �max� . This subgroup coincides with the kernel of a (unique
up to multiplication by a positive real number) non-decreasing group homomorphism
�� W � ! .R; C/.

A direct consequence of this theorem is that Conrad-orderable groups are locally
indicable, that is, their non-trivial finitely generated subgroups admit non-trivial group
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homomorphisms into .R; C/. Actually, the converse is also true (see [11] and refer-
ences therein).

The study of the topological properties of CO.�/ is much simpler than those of
BO.�/. Indeed, in most of the cases, CO.�/ has no isolated point (and hence it is
homeomorphic to the Cantor set if the group is countable). To show a result in this
direction, we need to recall the extension procedure for creating group orderings.

Let � be a left-ordering on a group � , let �0 be a �-convex subgroup of � ,
and let �0 be a left-ordering on �0. The extension of �0 by � is the left-ordering
�� on � obtained by “changing” � into �0 on �0, and “keeping it” outside. More
precisely, the positive cone of �� is P C�0

[ .P C� n �0/. One can easily check that �0

remains ��-convex. Moreover, if � and �0 are Conradian, then the resulting �� is
also a C -ordering. Unfortunately (or perhaps fortunately), the bi-invariance of both
� and �0 does not guarantee the bi-invariance of ��: to ensure this, we also need
to assume that the positive cone of �0 is invariant under conjugacies by elements in
� . Finally, it is not difficult to check that if �0 is a �-convex normal subgroup of � ,
then � induces a left-ordering on the quotient �=�0, which is a bi-ordering if � is
bi-invariant.

Example 1.4. For simplicity, let us denote by � the bi-ordering �C
x� on F .

Then, for a non-trivial element g 2 F , the subgroups Fg and F g coincide with
ff 2 F j supp.f / � �x�

g ; 1�g and ff 2 F j supp.f / � Œx�
g ; 1�g, respectively,

where supp.f / D fx j f .x/ ¤ xg is the support of f . The quotient �g=�g is
order isomorphic to Z via the homomorphism f �g 7! log2.f 0C.x�

g //. A curious
C -ordering �0 on F (which is not bi-invariant!) is obtained as follows: take the
extension �� of the restriction of � to �g by the restriction of x� to �g , and then
extend �� by �. This left-ordering obeys the following rule: a non-trivial element
f 2 F is positive with respect to �0 if and only if either x�

f
¤ x�

g and f 0C.x�
f

/ > 1,
or x�

f
D x�

g and f 0C.x�
f

/ < 1.

Example 1.5. As the reader can easily check, the bi-ordering �C;�
0;x� appears as the

extension by �C
x� of the restriction of its conjugate x�C

x� (which coincides with ��
x�)

to the maximal proper �C
x�-convex subgroup F max D ff 2 F j f 0C.0/ D 1g. The

bi-orderings ��;C
0;x� , �C;�

1;xC , and ��;C
1;xC may be obtained in the same way starting from

��
x� , �C

xC , and ��
xC , respectively.

Remark 1.6. In general, if � is a finitely generated (non-trivial) group endowed with
a bi-ordering �, one can easily check that the ordering �� obtained as the extension
by � of x� restricted to �max� is bi-invariant. This bi-ordering (resp. its conjugate x��)
is always different from x� (resp. from �), and it coincides with � (resp. with x�) if and
only if the only proper �-convex subgroup is the trivial one; by Conrad’s theorem, �

is necessarily Abelian in this case. We thus conclude that every non-Abelian finitely
generated bi-orderable group admits at least four different bi-orderings. Moreover,
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(non-trivial) torsion-free Abelian groups having only two bi-orderings are those of
rank one (in higher rank one may consider lexicographic type orderings).

Proposition 1.7. If � is a non-solvable Conrad-orderable group, then CO.�/ con-
tains no isolated point.

Proof. Throughout the proof, fix a C -ordering � on � . We will first show that if there
are infinitely many subgroups of the form �g , then � is not isolated inside CO.�/.
Indeed, given finitely many distinct elements g1; : : : ; gk in � , consider the elements
fi;j of the form g�1

i gj . We need to produce a C -ordering �� on � different from �
but for which the “signs” of the elements fi;j are the same. To do this, choose g 2 �

such that �g is different from all of the subgroups �fi;j
. This condition implies that

the corresponding �g is different from all of the �fi;j . Now define �0 as being the
extension by � of the extension of the restriction of � to �g by the restriction of x�
to �g . One can easily show that �0 verifies all the desired properties.

Suppose now that, for some integer n�1, there are precisely n subgroups of the
form �g . We claim that � is solvable with solvability length at most n. Indeed, If
�g1

denotes the maximal proper �-convex subgroup of � then, by Conrad’s theorem,
�g1

is normal in � , and the quotient �=�g1
is Abelian. Hence, � 0 is contained in

�g1
. Since �g1

contains at most n 	 1 subgroups of the form �g , we may repeat this
argument... In at most n steps all the n-commutators in � will appear to be trivial,
which concludes the proof.

Left-orderable solvable groups are Conrad-orderable [3], [10]. Moreover, ac-
cording to [11], if a group � has infinitely many left-orderings, then no Conradian
ordering on � is isolated in LO.�/. It would be then interesting to classify left-
orderable solvable groups � for which CO.�/ has isolated points.1

2. Bi-orderings on F 0

For each dyadic (open, half-open, or closed) interval I , we will denote by FI the
subgroup of F formed by the elements whose supports are contained in I . No-
tice that if I is closed, then FI is isomorphic to F . Therefore, for every closed
dyadic interval I � �0; 1Œ, every bi-ordering �� on F 0 gives rise to a bi-ordering on
F � FI . Moreover, if we fix such an I , then the induced bi-ordering on FI com-
pletely determines �� (this is due to the invariance by conjugacy). The content of
Dlab’s theorem consists of the assertion that only a few (namely four) bi-orderings
on FI may be extended to bi-orderings on F 0. To reprove this result, we will first
focus on a general property of bi-orderings on F .

Let � be a bi-ordering on F . Since bi-invariant orderings are Conradian and
F is finitely generated, Conrad’s theorem provides us with a (unique up to positive

1Added in proof: this has been recently done in [13].
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scalar factor) non-decreasing group homomorphism �� W F ! .R; C/ whose kernel
coincides with the maximal proper �-convex subgroup of F . Since F 0 is a non-
Abelian simple group [2], this homomorphism factors through F=F 0 � Z2, where
the last isomorphism is given by fF 0 7! .log2.f 0C.0//; log2.f 0�.1///. Hence, we
may write (each representative of the class of) � in the form

��.f / D a log2.f 0C.0// C b log2.f 0�.1//:

A canonical representative is obtained by taking a; b so that a2 C b2 D 1. We will
call this the normalized Conrad homomorphism associated to �. In many cases, we
will consider this homomorphism as defined on Z2 � F=F 0, so that ��..m; n// D
am C bn, and we will identify �� to the pair .a; b/.

Now let �� be a bi-ordering on F 0. For each closed dyadic interval I � �0; 1Œ

let us consider the induced bi-ordering on F � FI . Since all the subgroups FI

for different closed dyadic intervals are conjugate by elements in F 0, this induced
bi-ordering on F –which we will just denote by �– does not depend on I , and hence
it is inherent to ��. For each such an I , let us consider the corresponding normalized
Conrad homomorphism ��;I .

Lemma 2.1. If �� corresponds to the pair .a; b/, then either a D 0 or b D 0.

Proof. Assume by contradiction that a > 0 and b > 0 (all the other cases are
analogous). Fix f 2 FŒ1=2;3=4� such that f 0C.1=2/ > 1 and f 0�.3=4/ < 1, and denote
I1 D Œ1=4; 3=4� and I2 D Œ1=2; 7=8�. Viewing f as an element in FI1

� F we have

��;I1
.f / D b log2.f 0�.3=4// < 0:

Since Conrad’s homomorphism is non-decreasing, this implies that f is negative with
respect to the restriction of �� to FI1

, and therefore f �� id. Now viewing f as an
element in FI2

� F we have

��;I2
.f / D a log2.f 0C.1=2// > 0;

which implies that f �� id, thus giving a contradiction.

We may now pass to the proof of Dlab’s theorem. Indeed, assume that for the
Conrad’s homomorphism above one has a > 0 and b D 0. We claim that �� then
coincides with �C

x� . To show this, we need to show that a non-trivial element f 2 F 0
is positive with respect to �� if and only if f 0C.x�

f
/ > 1. Now such an f may be seen

as an element in F
Œx�

f
;x

C

f
�
, and viewed in this way Conrad’s homomorphism yields

��;Œx�
f

;x
C

f
�
.f / D a log2.f 0C.x�

f //:

Since a > 0, if f 0C.x�
f

/ > 1 then the right-hand member in this equality is positive.
Conrad’s homomorphism being non-decreasing, this implies that f is positive with
respect to ��. Analogously, if f 0C.x�

f
/ < 1 then f is negative with respect to ��.
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Similar arguments show that the case a < 0, b D 0 (resp. a D 0, b > 0, and
a D 0, b < 0) necessarily corresponds to the bi-ordering ��

x� (resp. ��
xC , and �C

xC),
which concludes the proof.

Question 2.2. According to Proposition 1.2, a bi-ordering whose positive cone is
finitely generated as a normal semigroup is completely determined by finitely many
inequalities. This makes it natural to ask whether this is the case for the restrictions
to F 0 of �C

x� , ��
x� , �C

xC , and ��
xC . A more sophisticated question is the existence

of generators f , g of F 0 such that

� f 0C.x�
f

/ > 1, g0C.x�
g / > 1, f 0�.xC

f
/ < 1, and g0�.xC

g / > 1,

� F 0 n fidg is the disjoint union of hff; ggiC
N and hff �1; g�1giC

N ,
� F 0 n fidg is also the disjoint union of hff �1; ggiC

N and hff; g�1giC
N .

A positive answer to this question would immediately imply Dlab’s theorem. Indeed,
any bi-ordering � on F 0 would be completely determined by the signs of f and g.
For instance, if f � id and g � id then P C� would necessarily contain hff; ggiC

N ,
and by the second property above this would imply that � coincides with �C

x� .

3. Bi-orderings on F

3.1. Isolated bi-orderings on F . Before classifying all bi-orderings on F , we will
first give a proof of the fact that the eight elements in BOIsol.F / are isolated in
BO.F /. As in the case of F 0, this proof strongly uses Conrad’s homomorphism.

We just need to consider the cases of �C
x� and �C;�

0;x� . Indeed, all the other
elements in BOIsol.F / are obtained from these by the action of the (finite Klein’s)
group generated by the involutions � 7! x� and � 7! �� .

Let us first deal with �C
x� , denoted � for simplicity. Let .�k/ be a sequence in

BO.F / converging to �, and let �k � .ak; bk/ be the normalized Conrad’s homo-
morphism for �k (so that �k.m; n/ D akm C bkn and a2

k
C b2

k
D 1).

Claim 1. For k large enough one has bk D 0.

Indeed, let f , g be two elements in F�1=2;1� which are positive with respect to �
and such that f 0�.1/ D 1=2 and g0�.1/ D 2. For k large enough, these elements must
be positive also with respect to �k . Now notice that

�k.f / D 	bk and �k.g/ D bk :

Thus, if bk ¤ 0 then either f �k id or g �k id, which is a contradiction. Therefore,
bk D 0 for k large enough.

Let us now consider the bi-ordering �� on F � FŒ1=2;1� obtained as the restriction
of �. Let �� � .a�; b�/ be the corresponding normalized Conrad’s homomorphism.
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Claim 2. One has b� D 0.

Indeed, for the elements f , g in F�1=2;1� above we have

��.f / D 	b� and ��.g/ D b�:

If b� ¤ 0 this would imply that one of these elements is negative with respect to ��,
and hence with respect to �, which is a contradiction. Thus, b� D 0.

Denote now by ��
k

the restriction of �k to FŒ1=2;1�, and let ��
k

� .a�
k
; b�

k
/ be the

corresponding normalized Conrad’s homomorphism.

Claim 3. For k large enough one has b�
k

D 0.

Indeed, the sequence .��
k
/ clearly converges to ��. Knowing also that b� D 0,

the proof of this claim is similar to that of Claim 1.

Claim 4. For k large enough one has ak > 0 and a�
k

> 0.

Since Conrad’s homomorphism is non-trivial, both ak and a�
k

are nonzero. Take
any f 2 F such that f 0C.0/ D 2. We have �k.f / D ak . Hence, if ak < 0 then
f �k id, while f � id. Analogously, if a�

k
< 0 then one would have g �k id and

g � id for any g 2 FŒ1=2;1� satisfying g0.1=2/ D 2.

Claim 5. If ak and a�
k

are positive and bk and b�
k

are zero, then �k coincides with �.

Given f 2 F such that f � id, we need to show that f is positive also with
respect to �k . If x�

f
D 0 then f 0C.0/ > 1, and since ak > 0 this gives �k.f / D

ak log2.f 0C.0// > 0, and thus f �k id. If x�
f

¤ 0 then f 0C.x�
f

/ > 1, and since
a�

k
> 0 this gives ��

k
.f / D a�

k
log2.f 0C.x�

f
// > 0, and therefore one still has

f �k id.
The proof for �C;�

0;x� is similar to the above one. Indeed, Claims 1, 2, and 3, still
hold. Concerning Claim 4, one now has that ak > 0 and a�

k
< 0 for k large enough.

Having this in mind, one easily concludes that �k coincides with �C;�
0;x� for k very

large.

Question 3.1. It would be nice to know whether the positive cone of each element
in BOIsol.F / is finitely generated as a normal semigroup. Notice however that these
bi-orderings cannot be completely determined by the signs of finitely many elements,
since BO.F / is infinite (compare Question 2.2).

3.2. Classifying all bi-orderings on F . To simplify, we will denote by ƒ the union
of ƒC

x� , ƒ�
x� , ƒC

xC , and ƒ�
xC . To prove our main result, fix a bi-ordering � on F ,

and let �� W F ! .R; C/ be the corresponding normalized Conrad’s homomorphism.
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Since �� � .a; b/ is non-trivial and factors through Z2 � F=F 0, there are two
different cases to be considered.

Case I. The image ��.Z2/ has rank two.

This case appears when the quotient a=b is irrational. In this case, � induces the
bi-ordering of irrational type �a=b on Z2 viewed as F=F 0 (cf. Example 1.1). Indeed,
for each f 2 F n F 0 the value of ��.f / is nonzero, and hence it is positive if and
only if f � id.

The kernel of �� coincides with F 0. By Dlab’s theorem, the restriction of � to
F 0 must coincide with one of the bi-orderings �C

x� , ��
x� , �C

xC , or ��
xC . Therefore,

� is contained in ƒ, and the bi-ordering induced on the Z2-fiber is of irrational type.

Case II. The image ��.Z2/ has rank one.

This is the difficult case: it appears when either a=b is rational or b D 0. There
are two sub-cases.

Subcase 1. Either a D 0 or b D 0.

Assume first that b D 0. Denote by �� the bi-ordering induced on FŒ1=2;1�, and let
��� � .a�; b�/ be its normalized Conrad’s homomorphism. We claim that either a�
or b� is equal to zero. Indeed, suppose for instance that a� > 0 and b� > 0 (all the
other cases are analogous). Let m, n be integers such that n > 0 and a�m	b�n > 0;

and let f be an element in FŒ3=4;1� such that f 0C.3=4/ D 2m and f 0�.1/ D 2�n. Then
���.f / D 	b�n < 0, and hence f � id. On the other hand, taking h 2 F such that
h.3=4/ D 1=2, we get that h�1f h 2 FŒ1=2;1�, and

���.h�1f h/ D a� log2..h�1f h/0C.1=2//Cb� log2..h�1f h/0�.1// D am	bn > 0:

But this implies that h�1f h, and hence f , is positive with respect to �, which is a
contradiction.

(i) If a > 0 and a� > 0: We claim that � coincides with �C
x� in this case. Indeed,

let f 2 F be an element which is positive with respect to �C
x� . We need to show

that f � id. Now, since a > 0, if x�
f

D 0 then

��.f / D a log2.f 0C.0// > 0;

and hence f � id. If x�
f

¤ 0 then taking h 2 F such that h.x�
f

/ D 1=2 we obtain

that h�1f h 2 FŒ1=2;1�, and

���.h�1f h/ D a� log2..h�1f h/0.1=2// D a� log2.f 0.x�
f //:

Since a� > 0, the value of the last expression is positive, which implies that h�1f h,
and hence f , is positive with respect to �.

(ii) If a > 0 and a� < 0: Similar arguments to those of (i) above show that �
coincides with �C;�

0;x� in this case.
(iii) If a > 0 and b� > 0: We claim that � belongs to ƒ, and that the induced

bi-ordering on the Z2-fiber is the lexicographic one. To show this, we first observe
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that if f 2 F n F 0 is positive then either f 0C.0/ > 1, or f 0C.0/ D 1 and f 0�.1/ > 1.
Indeed, if f 0C.0/ ¤ 1 then the value of ��.f / D a log2.f 0C.0// ¤ 0 must be positive,
since Conrad’s homomorphism is non-decreasing. If f 0C.0/ D 1 we take h 2 F such
that h.1=2/ D x�

f
. Then h�1f h belongs to FŒ1=2;1�, and the value of

���.h�1f h/ D b� log2..h�1f h/0�.1// D b� log2.f 0�.1// ¤ 0

must be positive, since f (and hence h�1f h) is a positive element of F .
To show that � induces a bi-ordering on Z2, we need to check that F 0 is �-convex.

Let g 2 F 0 and h 2 F be such that id � h � g. If h was not contained in F 0, then
hg�1 would be a negative element in F n F 0. But since

.hg�1/0C.0/ D h0C.0/ and .hg�1/0�.1/ D h0�.1/;

this would contradict the remark above. Therefore, h belongs to F 0, which shows the
�-convexity of F 0. Again, the remark above shows that the induced bi-ordering on
Z2 is the lexicographic one.

(iv) If a > 0 and b� < 0: As in (iii) above, � belongs to ƒ, and the induced
bi-ordering �Z2 on the Z2-fiber is the one for which .m; n/ �Z2 .0; 0/ if and only if
either m > 0, or m D 0 and n < 0.

(v) If a < 0 and a� >0: As in (i) above, � coincides with ��;C
0;x� in this case.

(vi) If a < 0 and a� <0: As in (i) above, � coincides with ��
x� in this case.

(vii) If a < 0 and b� > 0: As in (iii) above, � belongs to ƒ, and the induced
bi-ordering �Z2 on the Z2-fiber is the one for which .m; n/ �Z2 .0; 0/ if and only if
either m < 0, or m D 0 and n > 0.

(viii) If a < 0 and b� < 0: As in (iii) above, � belongs to ƒ, and the induced
bi-ordering �Z2 on the Z2-fiber is the one for which .m; n/ �Z2 .0; 0/ if and only if
either m < 0, or m D 0 and n < 0.

The case a D 0 is analogous to the preceding one. Letting now �� be the restric-
tion of � to FŒ0;1=2�, for the normalized Conrad’s homomorphism ��� � .a�; b�/ one
may check that either a� D 0 or b� D 0.

Assume that b > 0. In the case b� > 0 (resp. b� < 0), the bi-ordering �
coincides with ��

xC (resp. ��;C
1;xC). If a� > 0 (resp. a� < 0), then � corresponds

to a point in ƒ whose induced bi-ordering �Z2 on the Z2-fiber is the one for which
.m; n/ �Z2 .0; 0/ if and only if either n > 0, or n D 0 and m > 0 (resp. either n > 0,
or n D 0 and m < 0).

Assume now that b < 0. In the case b� > 0 (resp. b� < 0), the bi-ordering �
coincides with �C;�

1;xC (resp. �C
xC). If a� > 0 (resp. a� < 0), then � corresponds

to a point in ƒ whose induced bi-ordering �Z2 on the Z2-fiber is the one for which
.m; n/ �Z2 .0; 0/ if and only if either n < 0, or n D 0 and m > 0 (resp. either n < 0,
or n D 0 and m < 0).

Subcase 2. Both a and b are nonzero.
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The main issue here is to show that F 0 is necessarily �-convex in F . Now since
ker.��/ is already �-convex in F , to prove this it suffices to show that F 0 is �-convex
in ker.��/. Assume by contradiction that f is a positive element in ker.��/ n F 0 that
is smaller than some h 2 F 0. Suppose first that � restricted to F 0 coincides with
either �C

x� or ��
x� , and denote by p the leftmost fixed point of f in �0; 1�. We claim

that f is smaller than any positive element g 2 F�0;pŒ. Indeed, since � coincides
with either �C

x� or ��
x� on F 0, the element f is smaller than any positive Nh 2 F�0;pŒ

such that xC
Nh is to the left of x�

h
; taking n 2 Z such that f �n.x�

h
/ is to the right of

x�
g , this gives f D f �nff n � f �n Nhf n � g.

Now take a positive element h0 2 F�0;pŒ such that for Nf D h0f there is no fixed
point in �0; pŒ (it suffices to consider a positive h0 2 F

Œ p
4 ; 3p

4 �
whose graph is very

close to the diagonal). Then id � Nf � h0g for every positive g 2 F�0;pŒ. The
argument above then shows that Nf is smaller than every positive element in F�0;pŒ. In
particular, since h0 D Nf f �1 is in F�0;pŒ and is positive, this implies that Nf � Nf f �1,
and hence f � id, which is a contradiction.

If the restriction of � to F 0 coincides with either �C
xC or ��

xC , one proceeds
similarly but working on the interval Œq; 1� instead of Œ0; p�, where q denotes the
rightmost fixed point of f in Œ0; 1Œ. This concludes the proof of the �-convexity of
F 0, and hence that of our main result.

Remark 3.2. Our arguments may be easily modified to show that the subgroup
F� D ff 2 F j f 0C.0/ D 1g has six different bi-orderings, namely (the restrictions
of) �C

x� , ��
x� , �C

xC , ��
xC , �C;�

1;xC , and ��;C
1;xC . An analogous statement holds for

FC D ff 2 F j f 0�.1/ D 1g. Finally, the group of piecewise-affine orientation-
preserving dyadic homeomorphisms of the real line whose support is bounded from
the right (resp. from the left) admits only two bi-orderings, namely (the natural ana-
logues of) �C

xC and ��
xC (resp. �C

x� and ��
x�). Notice however that this last result

is already contained in Dlab’s work [5] (compare Remark 1.6).
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