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A DENJOY TYPE THEOREM FOR COMMUTING CIRCLE

DIFFEOMORPHISMS WITH DERIVATIVES HAVING

DIFFERENT HÖLDER DIFFERENTIABILITY CLASSES

VICTOR KLEPTSYN AND ANDRÉS NAVAS

Abstract. Let d > 2 be an integer number, and let fk, k ∈ {1, . . . , d},
be C1+τk commuting circle diffeomorphisms, with τk ∈ ]0, 1[ and τ1 +
· · · + τd > 1. We prove that if the rotation numbers of the fk’s are
independent over the rationals (that is, if the corresponding action of
Z

n on the circle is free), then they are simultaneously (topologically)
conjugate to rotations.
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Introduction

Starting from the seminal works by Poincaré [13], [14] and Denjoy [3], a deep
theory for the dynamics of circle diffeomorphisms has been developed by many
authors [1], [7], [8], [18], and most of the fundamental related problems have been
already solved. Quite surprisingly, the case of several commuting diffeomorphisms is
rather special, as it was pointed out for the first time by Moser [9] in relation to the
problem of the smoothness for the simultaneous conjugacy to rotations. Roughly
speaking, in this case it should be enough to assume a joint Diophantine condition
on the rotation numbers which does not imply a Diophantine condition for any of
them (see the recent work [5] for the solution of the C∞ case of Moser’s problem).

A similar phenomenon concerns the classical Denjoy theorem. Indeed, in [4] it
was proved that if d > 2 is an integer number and τ > 1/d, then the elements
f1, . . . , fd of any family of C1+τ commuting circle diffeomorphisms are simultane-
ously (topologically) conjugate to rotations provided that their rotation numbers
are independent over the rationals (that is, no nontrivial linear combination of them
with rational coefficients equals a rational number). In other words, the classical
(and nearly optimal) C2 hypothesis for Denjoy theorem can be weakened in the
case of several commuting diffeomorphisms. The first and main result of this work
is a generalization of this fact to the case of different regularities.
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Theorem A. Let d > 2 be an integer number and τ1, . . . , τd be real numbers in
]0, 1[ such that τ1 + · · · + τd > 1. If fk, k ∈ {1, . . . , d}, are respectively C1+τk

circle diffeomorphisms which have rotation numbers independent over the rationals
and which do commute, then they are simultaneously (topologically) conjugate to
rotations.

It is maybe possible to modify the probabilistic arguments of [4] in order to deal
with the present case. However, the methods that we introduce here are different.
Indeed, for the proof of the result above we use a key new argument which is
somehow more deterministic.

Theorem A is (almost) optimal (in the Hölder scale), in the sense that if one
decreases slightly the regularity assumptions then it is no longer true. The following
result relies on classical constructions by Bohl [2], Denjoy [3], Herman [7], and
Pixton [12], and its proof consists on an easy extension of the construction given
by Tsuboi in [17].

Theorem B. Let d > 2 be an integer number and τ1, . . . , τd be real numbers in
]0, 1[ such that τ1 + · · · + τd < 1. If ρ1, . . . , ρd are elements in R/Z which are
independent over the rationals, then there exist C1+τk circle diffeomorphisms fk,
k ∈ {1, . . . , d}, having rotation numbers ρk, which do commute, and such that none
of them is topologically conjugate to a rotation.

It is well known that the techniques developed for Denjoy theory can be applied
to the study of group actions on the interval. In this direction we should point out
that the methods of this paper also allow to extend (in a straightforward way) the so
called “generalized Kopell lemma” and the “Denjoy–Szekeres type theorem” (The-
orems B and C of [4] respectively) for Abelian groups of interval diffeomorphisms
under analogous hypothesis of different regularities. Furthermore, the construction
of counter-examples for both of them when these hypothesis do not hold can be
also extended to this context. We leave the verification of all of this to the reader.

Acknowledgments. It is a pleasure to thank Bassam Fayad and Sergey Voronin
for their encouragements, as well as the Independent University of Moscow for the
hospitality during the conference “Laminations and Group Actions in Dynamics”
held in February 2007. The first author would like to thank the hospitality of the
University of Geneva, where he had a post-doctoral position at the time this work
was written.

1. A General Principle Revisited

As it is well known since the classical works by Denjoy, Schwartz and Sacksteder
[3], [15], [16], if I is a wandering interval1 for the dynamics of a finitely generated
semigroup Γ of C1+lip diffeomorphisms of the closed interval or the circle (on which
we will always consider the normalized length), one can control the distortion of
the elements of Γ over (a slightly larger interval than) I in terms of the sum of the
lengths of the images of I along the corresponding sequence of compositions and a

1We say that an interval is wandering if its images by different elements of the underlying
semigroup are disjoint.
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uniform Lipschitz constant for the derivatives of the (finitely many) generators of
Γ. If τ belongs to ]0, 1[ and Γ consists of C1+τ diffeomorphisms, the same is true
provided that the sum of the τ -powers of the lengths of the corresponding images
of I is finite (this last condition does not follow from the disjointness of these
intervals!): see for instance [4, Lemma 2.2]. It is not difficult to prove a similar
statement for the case of different regularities, and this is precisely the content of
the following lemma. However, to the difference of [4], here we will deal with finite
sequences of compositions by a technical reason which will be clear at the end of
the next section.

Lemma 1.1. Let Γ be a semigroup of (orientation preserving) diffeomorphisms of
the circle or the closed interval which is generated by finitely many elements gk, k ∈
{1, . . . , l}, which are respectively of class C1+τk , where τk ∈ ]0, 1]. Let Ck denote
the τk-Hölder constant of the function log(g′k), and let C = max{C1, . . . , Cl} and
τ = max{τ1, . . . , τl}. Given n0 ∈ N, for each n 6 n0 let us chose kn ∈ {1, . . . , l},
and for a fixed interval I let S > 0 be a constant such that

S >

n0−1
∑

n=0

|gkn · · · gk1(I)|τkn+1 . (1)

If n 6 n0 is such that gkn · · · gk1(I) does not intersect I but is contained in the

L-neighborhood of I, where L := |I|
2 exp(2τ CS) , then gkn · · · gk1 has a hyperbolic fixed

point.

Proof. Let J = [a, b] be the (closed) 2L-neighborhood of I, and let I ′ (resp. I ′′)
the connected component of J \ I to the right (resp. to the left) of I. We will prove
by induction on j ∈ {0, . . . , n0} that the following two conditions are satisfied:

(i)j |gkj . . . gk1(I
′)| 6 |gkj . . . gk1(I)|,

(ii)j sup{x,y}⊂I∪I′

(gkj
...gk1

)′(x)

(gkj
...gk1

)′(y) 6 exp(2τCS).

Condition (ii)0 is trivially satisfied, whereas condition (i)0 is satisfied since |I ′| =
2L 6 |I|. Assume that (i)i and (ii)i hold for each i ∈ {0, . . . , j − 1}. Then for
every x, y in I ∪ I ′ we have

∣

∣

∣

∣

log

(

(gkj · · · gk1)
′(x)

(gkj · · · gk1)
′(y)

)∣

∣

∣

∣

6

j−1
∑

i=0

∣

∣log(g′ki+1
(gki · · · gk1(x))) − log(g′ki+1

(gki · · · gk1(y)))
∣

∣

6

j−1
∑

i=0

Cki+1

∣

∣gki · · · gk1(x) − gki · · · gk1(y)
∣

∣

τki+1

6 C

j−1
∑

i=0

(

|gki · · · gk1(I)| + |gki · · · gk1(I
′)|
)τki+1

6 C2τ

j−1
∑

i=0

|gki · · · gk1(I)|τki+1

6 C2τS.
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Figure 1.

This shows (ii)j . To verify (i)j first note that there must exist x ∈ I and y ∈ I ′

such that

|gkj · · · gk1(I)| = |I| · (gkj · · · gk1)
′(x) and |gkj · · · gk1(I

′)| = |I ′| · (gkj · · · gk1)
′(y).

Therefore, by (ii)j ,

|gkj · · · gk1(I
′)|

|gkj · · · gk1(I)|
=

(gkj · · · gk1)
′(x)

(gkj · · · gk1)
′(y)

·
|I ′|

|I|
6 exp(2τCS)

|I ′|

|I|
= 1,

which proves (i)j . Obviously, similar arguments show that (i)j and (ii)j also hold
for every j ∈ {0, . . . , n0} when replacing I ′ by I ′′.

Now for simplicity let us denote hj = gkj · · · gk1 . Assume that hn(I) is contained
in the L-neighborhood of the interval I and does not intersect I (see Figure 1).
Then property (i)n gives hn(J) ⊂ J , and this already implies that hn has a fixed
point x in J . (The reader will see that the existence of this fixed point together
with the fact that hn 6= id is the only information that we will retain for the proof
of Theorem A.)

To conclude we would like to show that the fixed point x is hyperbolic. To do
this just notice that there exists y ∈ I such that

h′
n(y) =

|hn(I)|

|I|
6

L

|I|
.

Therefore, by (ii)n,

h′
n(x) 6 h′

n(y) exp(2τCS) 6
L exp(2τCS)

|I|
=

1

2
,

and this finishes the proof. �

2. Proof of Theorem A

Recall the following well known argument (see for instance [6, Proposition 6.17]
or [11, Lemma 4.14]). If f1, . . . , fd are commuting circle homeomorphisms, then
there is a common invariant probability measure µ on S1. Moreover, if the rotation
number of at least one of them is irrational, then there is no finite orbit for the
group action, and the measure µ has no atom. Therefore, the distribution function

Fµ : S1 → R/Z, Fµ(x) := µ([0, x[),
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gives a (simultaneous) semiconjugacy between the maps f1, . . . , fd and the rota-
tions corresponding to their rotation numbers. Thus, for the proof of Theorem A
we have to show that this semiconjugacy is in fact a conjugacy, and our strategy
for proving this (under the hypothesis of the theorem) is the classical one and goes
back to Schwartz [16]. Indeed, in the contrary case the support of µ would be a
(minimal) invariant Cantor set, and the connected components of its complement
would correspond to the maximal wandering open intervals. Fixing one of these
intervals, say I, we will search for a sequence of compositions hn = fkn · · · fk1 satis-
fying the hypothesis of Lemma 1.1. This will allow us to conclude that some hn has
a (hyperbolic) fixed point, thus implying that its rotation number is equal to zero.
However, this is in contradiction to the fact that the rotation numbers of the fk’s
are independent over the rationals (it is easy to verify that the rotation number
restricted to any group of circle homeomorphisms which preserves a probability
measure on S1 is a group homomorphism: see again [6] or [11]).

In order to ensure the existence of the sequence (hn), the main idea of [4] was to
endow the space of all (infinite) sequences of compositions with a natural probability
measure, and then to prove that the “generic ones” satisfy many nice properties as
for instance the convergence of the sum (1) as n0 goes to infinity. It seems difficult
to apply such a probabilistic argument to the case of different regularities, and we
will need to introduce a new argument which is somehow more deterministic, since
it gives partial information on the sequence that we find. For simplicity we will
first deal with the case d = 2.

2.1. The case d = 2. Although not explicitly stated in [4], the main probabilistic
argument for the proof of the generalized Denjoy theorem therein is not a dynamical
issue, but it is just a statement concerning the finiteness of the sum of the τ -powers
of some positive real numbers. To be more concrete (at least in the case d = 2
and when τ > 1/2), if (ℓi,j) is a double-indexed sequence of positive numbers with
finite total sum (where i and j are nonnegative integers), then with respect to
some natural probability distribution on the space of infinite paths (i(n), j(n))n>0

satisfying i(0) = j(0) = 0, i(n+1) > i(n), j(n+1) > j(n) and i(n+1)+ j(n+1) =
1 + i(n) + j(n), one has almost everywhere the convergence of the sum

∑

n>0

ℓτ
i(n),j(n).

The first goal of this section is to prove the existence of paths sharing a similar
property in the case of different exponents τ1, τ2 in ]0, 1[ (with τ1 + τ2 > 1). A
substantial difference here is that we will construct our sequence by concatenating
infinitely many finite paths, and each one of these paths will be chosen among
finitely many ones. To do this we begin with the following elementary lemma.

Lemma 2.1. Let ℓi,j be positive real numbers, where i ∈ {1, . . . , m} and j ∈
{1, . . . , n}. Assume that the total sum of the ℓi,j’s is less than or equal to 1. If τ
belongs to ]0, 1[, then there exists k ∈ {1, . . . , n} such that

m
∑

i=1

ℓτ
i,k 6

m1−τ

nτ
.
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Proof. We will show that the mean value of the function k 7→
∑m

i=1 ℓτ
i,k is less than

or equal to m1−τ/nτ , from where the claim of the lemma follows immediately. To
do this first notice that, by Hölder’s inequality, for each fixed k ∈ {1, . . . , n} one
has
m
∑

i=1

ℓτ
i,k =

〈

(ℓτ
i,k)m

i=1, (1)m
i=1

〉

6
∥

∥(ℓτ
i,k)m

i=1

∥

∥

1/τ
· ‖(1)m

i=1‖1/(1−τ) =

(

m
∑

i=1

ℓi,k

)τ

m1−τ .

Thus, by using Hölder’s inequality again one obtains

1

n

n
∑

k=1

(

m
∑

i=1

ℓτ
i,k

)

=
m1−τ

n

〈((

n
∑

k=1

ℓi,k

)τ )n

k=1

, (1)n
k=1

〉

6
m1−τ

n

∥

∥

∥

∥

∥

((

n
∑

k=1

ℓi,k

)τ )n

k=1

∥

∥

∥

∥

∥

1/τ

· ‖(1)n
k=1‖1/(1−τ)

=
m1−τ

n

(

n
∑

k=1

m
∑

i=1

ℓi,k

)τ

n1−τ

6
m1−τ

nτ
,

which finishes the proof. �

Now we explain the main idea of our construction. Let us assume that the
total sum of the double-indexed sequence of positive numbers ℓi,j is 6 1, and
suppose that the numbers τ1 ∈ ]0, 1[ and τ2 ∈ ]0, 1[ such that τ1 + τ2 > 1 are
fixed. Denoting by [[a, b]] the set of integers between a and b (with a and/or b
included when they are in Z), let us consider any sequence of rectangles Rm ⊂
N0×N0 such that R0 = {(0, 0)}, R2m+1 = [[im, im+1]]× [[jm, jm+2]] and R2m+2 =
[[im, im+2]] × [[jm+1, jm+2]], where (im)m>1 and (jm)m>1 are strictly increasing
sequences of nonnegative integers numbers satisfying i0 = i1 = 0 and j0 = j1 = 0
(see Figure 2). Denoting by Xm and Ym respectively the number of points on the
horizontal and vertical sides of each Rm, a direct application of Lemma 2.1 gives
us, for ε := 1 − τ1 − τ2 > 0 and each m > 0:

• an integer r(2m + 1) ∈ [[im, im+1]] such that

jm+2
∑

j=jm

ℓτ2

r(2m+1),j 6
Y 1−τ2

2m+1

Xτ2
2m+1

=
Y τ1

2m+1

Xτ2
2m+1

· Y −ε
2m+1,

• an integer r(2m + 2) ∈ [[jm+1, jm+2]] such that

im+2
∑

i=im

ℓτ1

i,r(2m+2) 6
X1−τ1

2m+2

Y τ1
2m+2

=
Xτ2

2m+2

Y τ1
2m+2

· X−ε
2m+2.

Starting from the origin and following the corresponding horizontal and vertical
lines, we find an infinite path (i(n), j(n))n>0 satisfying

i(0) = j(0) = 0, i(n + 1) > i(n), j(n + 1) > j(n),

i(n + 1) + j(n + 1) = 1 + i(n) + j(n),
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Figure 2.

and such that the sum
∑

n>0

ℓ
τα(n)

i(n),j(n) (2)

is bounded by

∑

m>0

[

Y τ1
2m+1

Xτ2

2m+1

· Y −ε
2m+1 +

Xτ2
2m+2

Y τ1

2m+2

· X−ε
2m+2

]

, (3)

where α(n) := 1 if |i(n + 1) − i(n)| = 1 and α(n) := 2 if |j(n + 1) − j(n)| = 1.
Now let us consider any choice such that im = [4mτ1] and jm = [4mτ2 ] for m large

enough. Writing am ≃ bm when (am) and (bm) are sequences of positive numbers
such that (am/bm) remains bounded and away from zero, for such a choice we have
Xm ≃ 2mτ1 and Ym ≃ 2mτ2 . Thus,

Xτ2
m

Y τ1
m

≃
(2mτ1)τ2

(2mτ2)τ1
= 1,

and therefore there exists C′ > 0 such that, for each m > 0,

1

C′
6

Xτ2
m

Y τ1
m

6 C′.
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This implies that, for C̄ = 1 + max{(42τ1 − 1)−ε, (42τ2 − 1)−ε}, the sum in (3) is
bounded by

S := C′C̄





∑

m>0

[( 1

4mτ2

)ε

+
( 1

4mτ1

)ε]



 = C′C̄

(

4τ2ε

4τ2ε − 1
+

4τ1ε

4τ1ε − 1

)

, (4)

and so the value of the sum (2) is finite (and also bounded by S).

We can now proceed to the proof of Theorem A in the case d = 2. Assume
by contradiction that fk, k ∈ {1, 2}, are respectively C1+τk commuting circle dif-
feomorphisms which are not simultaneously conjugate to rotations and which have
rotation numbers independent over the rationals. Let I be a connected component
of the complement of the invariant minimal Cantor set for the group action, and
let ℓi,j = |f i

1f
j
2 (I)|. We obviously have

∑

i,j ℓi,j 6 1, and so we can apply all our
previous discussion to this sequence. In particular, there exists an infinite path
(i(n), j(n)) starting at the origin and such that the sum

∑

n>0

ℓ
τα(n)

i(n),j(n)

is bounded by the number S > 0 defined by (4). If for n > 1 we let kn = α(n−1) ∈
{1, 2}, then we obtain a sequence of compositions hn = fkn . . . fk1 such that the
preceding sum coincides term by term with

∑

n>0

|fkn . . . fk1(I)|τkn+1 .

Thus, in order to apply Lemma 1.1 to get a contradiction, we just need to verify
that, for some n > 1, the hypothesis that hn(I) = fkn . . . fk1(I) is contained in the

L-neighborhood of I is satisfied (where L := |I|
2 exp(2τ CS) , τ := max{τ1, τ2}, and

C := max{C1, C2}, with Ck being the τk-Hölder constant for the function log(f ′
k)).

To do this first notice that, if we collapse all the connected components of the
complement of the minimal invariant Cantor set, then we obtain a topological cir-
cle Ŝ1 on which the original diffeomorphisms induce naturally minimal homeomor-

phisms f̂1 and f̂2 which are simultaneously conjugate to rotations. Moreover, the
L-neighborhood of I becomes a nondegenerate interval Û ; thus, there exists N ∈ N

such that the intervals f̂−1
1 (Û), . . . , f̂−N

1 (Û), as well as f̂−1
2 (Û), . . . , f̂−N

2 (Û), cover

the circle Ŝ1. This easily implies that for any image I0 of I by some element of the
semigroup generated by f1 and f2 there exists k and k′ in {1, . . . , N} such that

fk
1 (I0) and fk′

2 (I0) are contained in the L-neighborhood of I. Now it is easy to see
that, for the sequence of compositions that we found, for every N̄ ∈ N there exists
some integer r ∈ N such that kr = kr+1 = · · · = kr+N̄ . For N̄ = N this obviously
implies that at least one of the intervals hr+1(I), . . . , hr+N(I) is contained in the
L-neighborhood of I, thus finishing the proof.

We would like to close this section by giving a different type of choice for the
sequence of rectangles which is simpler to describe and for which the preceding
arguments are also valid. (For simplicity, we will use a similar construction to
deal with the case d > 2, although the preceding one still applies). This sequence



DENJOY THEOREM FOR COMMUTING DIFFEOMORPHISMS 485

•
•
•••••••••

•
•
•
•
•
•
•
•••••••••••••

•
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

R′
2 R′

3

R′
4 R′

5

R′
6 R′

7

x′
0 x′

1 = x′
2 x′

3 = x′
4 x′

5 = x′
6 x′

7 = x′
8

y′
0 = y′

1

y′
2 = y′

3

y′
4 = y′

5

y′
6 = y′

7

Figure 3.

(R′
m)m>0 is of the form [[0, x′

m]]× [[0, y′
m]], where (x′

m) and (y′
m) are nondecreasing

sequences of positive integer numbers such that x′
0 = y′

0 = 0, x′
m > x′

m−1 and
y′

m = y′
m−1 if m is odd, and x′

m = x′
m−1 and y′

m > y′
m−1 if m is even. If (ℓi,j)

is a double-indexed sequence of positive real numbers with total sum 6 1, we
chose these integer numbers in such a way that x′

2m+1 = x′
2m+2 = [4mτ1 ] and

y′
2m = y′

2m+1 = [4mτ2 ] for m large enough. As before, inside the rectangle Rm

there is a “good” vertical (resp. horizontal) segment of line Lm for m even (resp.
odd). Therefore, for each M0 ∈ N we can concatenate these segments between
Lm−1∩Lm and Lm∩Lm+1 at the mth step for m < M0, and between LM0−1∩LM0

and the point of LM0 on the boundary of RM0 at the last step (see Figure 3). In
this way we obtain a path (starting at the origin) of finite length n(M0) − 1 for
which the sum

n(M0)−1
∑

n=0

ℓ
τα(n)

i(n),j(n)

is bounded by some number S > 0 which is independent of M0.
Now let fk, k ∈ {1, 2}, be two commuting circle diffeomorphisms of class C1+τk

which are not simultaneously conjugate to rotations. Fix again one of the maximal
wandering open intervals I for the dynamics, and let ℓi,j = |f i

1f
j
2 (I)|. (Notice that

∑

i,j ℓi,j 6 1.) The method above gives us a family of finite paths, and each of
these paths determines uniquely a sequence of compositions. Remark however that
there is a little difference here, since we allow the use of the inverses of the fk’s.
Therefore, in order to apply Lemma 1.1, we must consider {f1, f−1

1 , f2, f−1
2 } as

being our system of generators, and therefore we put τ = max{τ1, τ2} and C =
max{C1, C2, C′

1, C′
2}, where Ci (resp. C′

i) is a τi-Hölder constant for the function
log(f ′

i) (resp. log((f−1
i )′)). As in the previous proof, we need to verify that, for

some M0 ∈ N, there exists a nontrivial element in the sequence of compositions (hn)
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associated to its corresponding finite path which sends I inside the L-neighborhood

of itself, where L := |I|
2 exp(2τ CS) . As before, for proving this it suffices to show

that for every N there exists r ∈ N such that one has hr+i+1 = f1hr+i for each
i ∈ {0, . . . , N − 1}, or hr+i+1 = f2hr+i for each i ∈ {0, . . . , N − 1}. However,
this last property is always satisfied if M0 is big enough so that the number of
points with integer coordinates in the line segment LM0 contained in RM0 \RM0−1

is greater than N . Notice that it is in this last argument where we use the fact
that we keep only finite sequences of compositions, although our method combined
with a diagonal type argument easily shows the existence of an infinite sequence
for which the sum (2) converges.

2.2. The general case. In the case d = 2, the “good” paths leading to the
sequence of compositions which allows to apply Lemma 1.1 were obtained by con-
catenating horizontal and vertical lines. When d > 2 we will need to concatenate
lines in several (namely, d) directions, and the geometrical difficulty for doing this
is evident: in dimension bigger than 2, two lines in different directions do not nec-
essarily intersect. To overcome this difficulty we will use the fact that, at each step
(i.e. inside each rectangle), there is not only one finite path which is good, but this
is the case for a “large proportion” of finite paths. We first reformulate Lemma 2.1
in this direction.

Lemma 2.2. Let ℓi,j be positive real numbers, where i ∈ {1, . . . , m} and j ∈
{1, . . . , n}. Assume that the total sum of the ℓi,j’s is less than or equal to 1. If τ
belongs to ]0, 1[ and A > 1, then for a proportion of indexes k ∈ {1, . . . , n} greater
than or equal to (1 − 1/A) we have

m
∑

i=1

ℓτ
i,k 6 A ·

m1−τ

nτ
.

Proof. As in the proof of Lemma 2.1, the mean value of the function

k 7→

m
∑

i=1

ℓτ
i,k (5)

is less than or equal to m1−τ/nτ . The claim of the lemma then follows as a direct
application of Chebychev’s inequality: the proportion of points for which the value
of (5) is greater than this mean value times A cannot exceed 1/A. �

Now let (ℓi1,...,id
) be a multi-indexed sequence of positive real numbers hav-

ing total sum 6 1, and let τ1, . . . , τd be real numbers in ]0, 1[. Starting with
R0 = [[0, 0]]d, let us consider a sequence (Rm)m>0 of rectangles of the form
Rm = [[0, x1,m]]×· · ·× [[0, xd,m]] satisfying xk,m > xk,m−1 for each k ∈ {1, . . . , d},
with strict inequality if and only if k ≡ m (mod d). For each m > 1 denote by
s(m) ∈ {1, . . . , d} the residue class (mod d) of m, and denote by Fm the face

[[0, x1,m]] × · · · × [[0, xs(m)−1,m]] × {0} × [[0, xs(m)+1,m]] × · · · × [[0, xd,m]]
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(i1, ..., is(m+1)−2,0,0,

is(m+1)+1, ..., id)

admissible in Cm

(i1, ..., is(m+1)−1,0,0, is(m+1)+2 , ..., id)

admissible in Cm+1

Figure 4.

of Rm. For each (i1, . . . , is(m)−1, 0, is(m)+1, . . . , id) belonging to this face Fm we
consider the sum

xs(m),m
∑

j=0

ℓ
τs(m)

i1,...,is(m)−1,j,is(m)+1,...,id
.

By Lemma 2.2, if Am > 1 then the proportion of points in Fm for which this sum
is bounded by

Am ·
(1 + xs(m),m)1−τs(m)

∏

j 6=s(m)

(1 + xj,m)τs(m)
= Am ·

X
1−τs(m)

s(m),m
∏

j 6=s(m)

X
τs(m)

j,m

is at least equal to (1 − 1/Am), where Xj,m := 1 + xj,m. In order to concatenate
the corresponding lines we will use the following elementary lemma.

Lemma 2.3. Let us choose inside each rectangle (Rm)m>1 a set L(m) of (com-
plete) lines in the corresponding s(m)-direction whose proportion (with respect to
all the lines in that direction inside (Rm)) is at least (1 − 1/Am). If M0 ∈ N

is such that
∑M0

m=1 1/Am < 1, then there exists a sequence of lines Lm ∈ L(m),
m ∈ {0, . . . , M0}, such that Lm+1 intersects Lm for every m < M0.

Proof. Let us denote by Cm the (d − 2)-dimensional face of Rm given by

[[0, x1,m]] × · · · × [[0, xs(m)−1,m]] × {0} × {0} × [[0, xs(m)+2,m]] × · · · × [[0, xd,m]].

Call a point (i1, . . . , is(m)−1, 0, 0, is(m)+2, . . . , id) ∈ Cm admissible if there ex-
ists a sequence of lines Li ∈ L(i), i ∈ {0, . . . , m}, such that Li intersects Li+1

for every i ∈ {0, . . . , m − 1}, and such that Lm projects in the s(m)-direction
into a point (i1, . . . , is(m)−1, 0, is(m)+1, is(m)+2, . . . , id) ∈ Fm for some is(m)+1 ∈
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[[0, xs(m)+1,m+1]]. We will show that the proportion of admissible points in CM0 is
greater than or equal to

P := 1 −

M0
∑

m=1

Am > 0.

To do this, for each m > 0 let us denote by Pm the proportion of admissible
points in Cm. Since R0 reduces to the origin, it suffices to show that, for all m > 0,

Pm+1 > Pm −
1

Am+1
.

To prove this inequality first notice that each line Lm+1 ∈ L(m + 1) determines
uniquely a point (i1, . . . , is(m+1)−1, 0, is(m+1)+1, . . . , id) ∈ Fm+1. The projection
into Cm of this line then corresponds to the point

(i1, . . . , is(m+1)−2, 0, 0, is(m+1)+1, . . . , id).

If this is an admissible point of Cm then we can concatenate the line Lm+1 to the
sequence of lines corresponding to it (see Figure 4). Now the proportion of lines in
L(m + 1) being at least 1− 1/Am+1, the proportion of those lines which project on
Cm into an admissible point is at least equal to

1 −
1

Am+1
− (1 − Pm) = Pm −

1

Am+1
.

By projecting in the (s(m + 1) + 1)-direction, this obviously implies that the pro-
portion of admissible points in Cm+1 is also greater than or equal to Pm −1/Am+1,
thus finishing the proof. �

Observe that a sequence of lines Lm as above determines a finite path (starting
at the origin) of points (x1(n), . . . , xd(n)) having nonnegative integer coordinates
such that the distance between two consecutive ones is equal to 1. Moreover, if we
denote by n(M0) the length of this path plus 1, the corresponding sum

n(N0)−1
∑

n=0

ℓ
τα(n)

x1(n),...,xd(n) (6)

is bounded by

M0
∑

m=0

Am ·
(1 + xs(m),m)1−τs(m)

∏

i6=s(m)

(1 + xi,m)τs(m)
=

M0
∑

m=0

Am ·
X

1−τs(m)

s(m),m
∏

j 6=s(m)

X
τs(m)

j,m

, (7)

where α(n) equals the unique index in {1, . . . , d} s. t. |xα(n)(n+1)−xα(n)(n)| = 1.

Now let us define Am = 2εmτs(m)/2A, where A is a large enough constant so that
∑

m>0 1/Am < 1, and let us consider any choice of the xk,m’s so that Xk,m ≃ 2mτk .
For such a choice we have

X1−τk

k,m
∏

j 6=k

Xτk
j,m

= X−ε
k,m ·

∏

j 6=k

X
τj

k,m

Xτk
j,m

≃ 2−εmτk ·
∏

j 6=k

(2mτk)τj

(2mτj )τk
= 2−εmτk , (8)

where ε := 1 − τ1 − · · · − τd > 0. Therefore, for each M0 ∈ N the preceding lemma
provides us a sequence of lines Lm, m ∈ {0, . . . , M0}, such that Lm+1 intersects
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Lm for each m < M0, and such that the corresponding expression (7) is bounded
from above by

M0
∑

m=0

2εmτs(m)/2A ·
X1−τk

k,m
∏

j 6=k

Xτk
j,m

6 AC′
∑

m>0

2−εmτs(m)/2 6

6 AC′
∑

m>0

2−εmτ ′/2 =: S < ∞, (9)

where τ ′ := min{τ1, . . . , τd} and C′ is a constant (independent of M0) giving an
upper bound for the quotient between the left and the right hand expressions in (8).

With all this information in mind we may proceed to the proof of Theorem
A in the case d > 2 in the very same way as in the (second proof for the) case
d = 2. Indeed, assume that fk, k ∈ {1, . . . , d}, are circle diffeomorphisms as in
the statement of the theorem which are not conjugate to rotations, and let I be a
maximal open wandering interval for the dynamics (i.e. a connected component of
the complement of the minimal invariant Cantor set). Obviously, we may apply all
our previous discussion to the multi-indexed sequence (ℓi1,...,id

) defined by ℓi1,...,id
=

|f i1
1 . . . f id

d (I)|. In particular, for each M0 ∈ N we can find a finite path so that
the sum (6) is bounded by the number S > 0 defined by (9) (which is independent
of M0). Each such a path induces canonically a finite sequence of compositions
by the fk’s and their inverses. Therefore, in order to apply Lemma 1.1 to get a
contradiction, we need to verify that some of such sequences contains a (nontrivial)

element hn which sends I into its L-neighborhood for L := |I|
2 exp(2τ CS) , where

τ := max{τ1, . . . , τd} and C := max{C1, . . . , Cd, C′
1, . . . , C′

d}, with Ck (resp.

C′
k) being the τk-Hölder constant of the function log(f ′

k) (resp. log((f−1
k )′). To

ensure this last property let U be the L-neighborhood of I, and let N ∈ N be such
that, given any wandering interval, among the first N iterates of f1, as well as for
f2, . . . , fd, at least one of them sends this interval inside U . If we take M0 large
enough so that the number of points with integer coordinates in LM0 which are
contained in RM0 \ RM0−1 exceeds N , then one can easily see that the associated
sequence of compositions contains the desired element hn. This finishes the proof
of Theorem A.

3. Proof of Theorem B

The strategy for the proof of Theorem B is well known. We prescribe the ro-
tation numbers ρ1, . . . , ρd (which are supposed to be independent over the ratio-
nals), we fix a point p ∈ S1, and for each (i1, . . . , id) ∈ Z

d we replace the point
Ri1

ρ1
. . . Rid

ρd
(p) by an interval Ii1,...,id

of length ℓi1,...,id
in such a way that the total

sum of the ℓi1,...,id
’s is finite. Doing this we obtain a new circle on which the ro-

tations Rρk
induce nice homeomorphisms if we extend them appropriately to the

intervals Ii1,...,id
(outside these intervals the induced homeomorphisms are canon-

ically defined). More precisely, as it is well explained in [4], [7], [10], [17], if there
exists a constant C′ > 0 so that for all (i1, . . . , id) ∈ Z

d and all k ∈ {1, . . . , d} one
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has
∣

∣

∣

∣

ℓi1,...,1+ik,...,id

ℓi1,...,ik,...,id

− 1

∣

∣

∣

∣

1

ℓτk
i1,...,ik,...,id

6 C′, (10)

then one can perform the extension to the intervals Ii1,...,id
in such a way the

resulting maps fk, k ∈ {1, . . . , d}, are respectively C1+τk diffeomorphisms and
commute, and moreover their derivatives are identically equal to 1 on the in-
variant minimal Cantor set.2 Indeed, one possible extension is given by fk(x) =
(ϕIi1,...,ik,...,id

)−1 ◦ϕIi1,...,1+ik,...,id
(x), where x belongs to the interior of the interval

Ii1...,ik,...,id
. Here, ϕI : ]a, b[→ R denotes the map

ϕI(x) =
−1

b − a
ctg
(

π
x − a

b − a

)

.

It turns out that a good choice for the lengths is

ℓi1,...,id
=

1

1 + |i1|1/τ1 + · · · + |id|1/τd
.

Indeed, on the one hand, if we decompose the sum of the ℓi1,...,id
’s according to the

biggest |ij|
1/τj we obtain

∑

(i1,...,id)∈Zd

ℓi1,...,id
6 1 +

d
∑

k=1

∑

|ij |
1/τj 6|ik|

1/τk

for all j∈{1,...,d}
|ik|>1

1

1 + |i1|1/τ1 + · · · + |id|1/τd
,

and therefore, for some constant C > 0, this sum is bounded by

1 +

d
∑

k=1

∑

n>0

card{(i1, . . . , id) : |ij|
1/τj 6 n1/τk for all j ∈ {1, . . . , d}, ik = n}

1 + n1/τk

6 1 + C
d
∑

k=1

∑

n>1

1

n1/τk

∏

j 6=k

nτj/τk = 1 + C
d
∑

k=1

∑

n>1

n(
P

j 6=k τj)/τk

n1/τk

= 1 + C
d
∑

k=1

∑

n>1

n(1−τk−ε)/τk

n1/τk
= 1 + C

d
∑

k=1

∑

n>1

1

n1+ε/τk
,

where ε := 1 − (τ1 + · · · + τd). (Remark that, since ε > 0, the last infinite sum
converges.)

On the other hand, the left hand expression in (10) is equal to

F (i1, . . . , id) :=

∣

∣

∣

∣

|1 + ik|
1/τk − |ik|

1/τk

1 + |i1|1/τ1 + · · · + |1 + ik|1/τk + · · · + |id|1/τd

∣

∣

∣

∣

×

×
(

1 + |i1|
1/τ1 + · · · + |ik|

1/τk + · · · + |id|
1/τd

)τk .

2Condition (10) is also necessary under these requirements. Indeed, there must exist a point
in Ii1,...,ik,...,id

for which the derivative of the corresponding map fk equals ℓi1,...,1+ik,...,id
/

ℓi1,...,ik,...,id
. Since the derivative of fk at the end points of Ii1,...,ik,...,id

is assumed to be equal

to 1, condition (10) holds for C′ being the τk-Hölder constant of the derivative of fk.
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In order to obtain an upper bound for this expression first notice that, if ik > 0,
then

F (i1, . . . , ik, . . . , id) 6 F (i1, . . . , −1 − ik, . . . , id).

Therefore, we can restrict to the case where ik < 0. For this case, denoting B =
1 +

∑

j 6=k |ij |
1/τj and a = |ik| we have

F (i1, . . . , id) =
a1/τk − (a − 1)1/τk

B + (a − 1)1/τk
·
(

B + a1/τk
)τk =

=
a1/τk − (a − 1)1/τk

(B + (a − 1)1/τk)1−τk
·

(

B + a1/τk

B + (a − 1)1/τk

)τk

.

Both factors in the last expression are decreasing in B. Thus, since B > 1,

F (i1, . . . , id) 6
a1/τk − (a − 1)1/τk

(1 + (a − 1)1/τk)1−τk
·

(

1 + a1/τk

1 + (a − 1)1/τk

)τk

.

Now notice that a > 1. For a = 1 the right hand expression above equals 2τk . If

a > 1 then the mean value theorem gives the estimate a1/τk−(a−1)1/τk 6 a
1

τk
−1

/τk,
and therefore the preceding expression is bounded from above by

1

τk

a
1

τk
−1

((a − 1)1/τk)1−τk
·

(

a1/τk

(a − 1)1/τk

)τk

=
1

τk

(

a

a − 1

)
1

τk
−1

·

(

a

a − 1

)

6

6
1

τk
· 2

1
τk

−1
· 2 =

21/τk

τk
.

We have then shown that for any (i1, . . . , id) ∈ Z
d one has

F (i1, . . . , id) 6
1

τk
21/τk .

In other words, if τ ′ = min{τ1, . . . , τd} then inequality (10) with the constant

C′ = 21/τ ′

/τ ′ holds for each (i1, . . . , id) ∈ Z
d and every k ∈ {1, . . . , d}, and this

finishes the proof of Theorem B.
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