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ABSTRACT. In this work we exhibit a one-parameter family of
Cl-diffeomorphisms Fy, of the 2-sphere, where o > 1, such that the equa-
tor St is an attracting set for every F, and Falg is the identity. For a > 2
the Lebesgue measure on the equator is a non ergodic physical measure having
uncountably many ergodic components. On the other hand, for 1 < a < 2
there is no physical measure for Fi,. If av < 2 this follows directly from the fact
that the w-limit of almost every point is a single point on the equator (and the
basin of each of these points has zero Lebesgue measure). This is no longer
true for a« = 2, and the non existence of physical measure in this critical case
is a more subtle issue.

1. Introduction. Much of the recent progress in Dynamics arose from a proba-
bilistic approach to the understanding of complicated dynamical systems. In this
approach, one of the main topics is the study of the statistical properties of typical
orbits, where typical means a positive volume (i.e. non zero Lebesgue measure) in
the ambient space.

In this work we deal with discrete time dynamical systems, more precisely with
diffeomorphisms f : M — M of compact boundless Riemannian manifolds. Given
any invariant measure for such a diffeomorphism, Birkhoff Ergodic Theorem asserts
that time averages converge at almost every point. In addition, if the measure is
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ergodic, then these limit time averages coincide a.e. with the space average with
respect to the measure. Nevertheless, invariant measures are in general singular
with respect to the volume [1], and so these observations say nothing about the
behavior for the orbits of any set of positive measure.

A physical measure is an invariant probability measure such that the set of initial
conditions for which the time averages converge and the limit coincides with the
space average has positive Lebesgue measure. This set is called the basin of the
measure. To be more precise, let us denote by Leb the normalized Riemannian
volume on M (which we will also call the Lebesgue measure on M). If p is an
invariant probability measure for f € Diff" (M) (with » > 1), the basin B(u) of p is
the set

1 n—1
B(p)=qzxeM : nlirrgoﬁ Z5j'j(x) =R
j=0
where 4, denotes the Dirac measure on z and the convergence is in the weak*
topology. An invariant measure u is physical if B(p) has positive Lebesgue measure.

Sinai, Ruelle, and Bowen [4, 5, 9, 10], proved that for uniformly hyperbolic
(Axiom A) diffeomorphisms and flows, time averages converge for Lebesgue almost
every point and the limit coincides with one of finitely many physical measures.
The problem of existence and finiteness of physical measures, beyond the Axiom A
setting, has remained at the center of Dynamics ever since. We refer the reader to
[3, 11, 13] for surveys of much of the progress obtained in this direction.

There exists a classical example of a family of systems exhibiting a physical
measure with two ergodic components for certain parameters and such that there is
no physical measure for the other parameters. This example is attributed by some
authors to Bowen [12] and by others to Mané [3], and so we will refer to it as the
Bowen-Mané’s example. It goes roughly as follows. Consider a vector field in the
plane with two saddle points s and s’ which are joined by two trajectories, so that
these trajectories bound a region U which contains one repelling fixed point r (see
Figure 1). Suppose that all the orbits in U\ {r} spiral outwards so as to accumulate
on the boundary oU.

FIGURE 1. Bowen-Mané’s Example

Let —a, 8 be the eigenvalues associated to s, and —a/, 3" the eigenvalues asso-
ciated to s’, where a,a’, 3, 3" are all positive real numbers. (See [7] for the very
interesting case where 3 = 0 and s is a saddle-node.) Of course, the hypothesis that
the orbits spiral out to the boundary of U imposes the requirement that aa’ > 3.
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If ac > B there is no physical measure. This is due to the fact that sojourn times
on small neighborhoods of s and s’ are comparable with all the previous time. If
ao’ = B (and the return maps to neighborhoods of s and s’ have “nice” Taylor
expansions), then there is a non ergodic physical measure which assigns positive
weight to each of the two saddle fixed points (see [8] for details).

In this work we exhibit a one-parameter family of C'-diffeomorphisms F,, : S —
S2, a > 1, such that the equator S! is the attracting set for each F,, and the restric-
tion F,|st is the identity. For o > 2, the Lebesgue measure Leb g1 on the equator
is a non ergodic physical measure having uncountably many ergodic components.
If 1 < a <2 then Lebg: is not a physical measure (and in fact, there is no physical
measure at all). For 1 < o < 2 the orbit of almost every point converges to a single
point on S!, and the basin of each of these points has zero Lebesgue measure. The
case a = 2 is special: almost every point has the whole equator S! as w-limit, but
the speed in which the orbits turn around the sphere is too slow so that sojourn
times on small regions near the equator are comparable with all the previous time.
We summarize all these facts in the following Theorem.

Py

l<a<?2 a=2 o> 2

FIGURE 2. Dynamics of F,, on the north hemisphere

Theorem 1.1. There exists a family of Ct-diffeomorphisms F, : S? — S?,a > 1,
such that:

(a) If a > 2 the Lebesgue measure Leb g1 supported on the equator S* is the
unique physical measure for F,. The basin of Leb g1 is equal to the sphere S?
minus the equator and the north and south poles. Furthermore, the restriction
F,ls1 equals the identity; in particular, Leb g1 has infinitely many ergodic
components.

(b) If1 < a < 2 there is no physical measure for F,. Moreover, for 1 < a < 2 the
orbits of all the points in the open hemispheres and different from the poles
converge to a single point on S*, and for a = 2 the w-limit of all such points
coincides with the whole equator.

It should be emphasized that all the Lyapunov exponents for the maps in our fam-
ily are zero, and so the phenomenon described above is essentially “non hyperbolic”,
in contrast to the Bowen-Mané’s example which deeply relies on the hyperbolicity
of the (saddle) fixed points. The following question remains completely open.

Question. What are the mild hyperbolic type conditions which ensure that physical
measures have necessarily finitely many ergodic components ?
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This work is organized as follows. In section 2 we define explicitly the family of
diffeomorphisms F,, and we show a crucial estimate for the proof of our Theorem:;
we also discuss the (simplest) case 1 < a < 2. In Section 3 we deal with the
particular case a = 2, and we prove the non existence of physical measure. Finally,
in Section 4 we prove that Leb g1 is a physical measure for F,, when o > 2.

2. The example. We think of the 2-sphere S? as being the surface obtained from
the cylinder T! x [—1, 1] by identification of the upper boundary T! x {1} and the
lower boundary T! x {—1} to the north pole Py and the south pole Ps respec-
tively. Having these identifications in mind, we consider a continuous family of
C'-diffeomorphisms F,, : S? — S?, a > 1, such that

(a) FQ(PN) = PN and Fa(Ps) = Ps.

(b) If (z,y) € [0,1] x [0,1), then

Fo(z,y) = (z +y (mod 1), fa(y)), (2.1)
where f, : [0,1] — [0,1] is a C'-diffeomorphism satisfying f,(y) =y — y® for
all y € [0,1/e] and fo(y) <y for all y € (0,1).
(c) If (z,y) € 10,1] x [0,—1) then F,(z,y) = Fuo(x,—y).

For any a > 1 the poles Py and Pg are repelling fixed points of F,. From
property (c) above, we can restrict our analysis of the dynamics of F, to the north
hemisphere. Since the restriction of F,, to the equator S! is the identity, the Dirac
measure on each point (z,0) € S! is an ergodic invariant measure for F,. The
Lebesgue measure Lebg: on S! is also invariant, and it has all these Dirac measures
as ergodic components. Of course, none of the points in S' belongs to the basin of
Leb St.

For all n > 1 and all (z,y) € [0,1] x [0,1) one has

Fo(e,y) = [+ 3 fi() (mod 1), f2() | (2.2)
7=0

Note that, since fo(y) < y for every y € [0,1), one has f2!(y) < f2(y) for all
n > 1. Furthermore, f7(y) — 0 as n — oo. We then conclude that S! contains the
w-limit of each point (x,y) in §? \ { Py, Ps}. Moreover, S! is an attracting set for
every F,.

The following lemma concerns the dynamics of the maps f,, and it is related to
classical estimates for the iteration near parabolic fixed points in Complex Dynamics
(see [6], Chapter II. 5). It is well known to the specialists, and we include a proof
just for the convenience of the reader.

Lemma 2.1. Let g(y) = y—y'™?, where 8 > 0. Then for every yo € (0,1) one has

1

im (n'Pg"(y0)) = FB (2.3)

1 1 1 p-1
Proof. Letting y,, = ¢"(yo) and z,, = 1/y,, we have S S

Tn41 Ln LL’}{’_B (E711+B '
248 2B0+8° 1
and so p4+1 = ———. Thus xg_H = —5——— and the expansion of ————in
zh —1 (z —1)8 (zh —1)8

series shows that

2 32 _ _
xfm = 2048 (Inﬁ T ﬂxnﬁ([ﬂrl)) +O(z?)
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and
2l 2 a0 (a7 4 B D).

In other words,

oy = T + B+ 0(x,”) (2.4)
and

i1 > )+ . (2.5)
From (2.5) one concludes that z > xg +nf > nf, and from this and (2.4) one
deduces
P < a:g +nf+ ZO(l/nﬂ) = a:g +np+ O(logn).
Therefore,
nB <P < :vg +nf+ O(logn).

Dividing by n and passing to the limit we obtain z/n — (3 as n — oo, which is
equivalent to (2.3). O

Using the previous lemma we can come back to the study of our original maps
F,.

Proposition 2.2. Let (z,y) € [0,1] x (0,1). If a > 2, then the w-limit of (x,y) is
St If1 < a < 2, then the w-limit of (z,y) € [0,1) x (0,1) is a single point on the
equator.

Proof. To prove this Proposition first note that, by Lemma 2.1, the series 27;01 fi(y)
diverges if and only if @ > 2. Putting z,, = = + Z?:_ol fi(y) we have F"((x,y)) =
(zn (mod 1), f2(y)). Since f2(y) — 0 as n — oo, if 2z, converges (i.e. if 1 < a < 2)
then F2'((z,y)) tends to (limy, e zn, (mod 1),0). If z, diverges (i.e. if o > 2) then,
since 2,11 — 2z, = f(y) goes to zero, the sequence z, (mod 1) is dense in T'. This
easily implies that, in the latter case, the w-limit of (z,y) is the whole equator. [

If 1 < a < 2then S?\ {Py, Ps} is foliated by the basins of the measures 3(2,0)»
where 2 € T!. The leaves of this foliation contain exactly one point on each level
{(z,y) : y = ¢}, where ¢ € (=1, 1). Therefore, by Fubini’s theorem, every basin has
zero Lebesgue measure. This shows that, in this case, there is no physical measure
for F,,.

3. Case a = 2: There is no physical measure. In this Section we deal only
with the quite special diffeomorphism F' = F5, and to simplify notations we put
f = f2. Fix once and for all a point (zo,y0) € [0,1] x (0,1). For ¢ > 0 let us define

n(t) =min{n >0 : zo+yo+---+ " (yo) >t}
Given k € N denote ng = n(k+1/2) and nj = n(k+ 1), so that ni < n}. Denoting
by () the sequence of probabilities
1
tn =~ [8wo,y0) T OF (o) T+ F OFn 2 (wo.p0)]
we will show that the sets of accumulation points of the sequences (fin, ) and (fnz )k
are different. To do this, it suffices to exhibit a continuous function ¢ : S? — R

such that
likminf © dpiy, > limsup/god,un;;. (3.6)

k—oo
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Now, since (ve —1)/(e — 1) < 1/2 and (Ve —1)/(v/e — 1//e) > 1/2, we can fix

0 > 0 and € > 0 very small so that
15
exp ( §+8) — exp (%)

1
exp (—2(1_5)) —1
exp () — 1 exp (7is) — e (~ o)

Let g1,g2 : [0,1] — [0,1] be the continuous functions illustrated below and which
satisfy:

> (3.7)

and

<1 1
2 2

1 for z € [0,1/2 — 0]
’ ’ 1 for y € [0, yo],
gi(z) =< 0 for z € [1/2,1], g2(v) :{ 0 o Z :[1 Yol
0 for x = 0; '
1 1
n
P 92
0T 1 0 "

FIGURE 3. ¢1, g2 test functions

Put ¢(x,y) = g1(x)g2(y). Note that ¢ induces a continuous function on S?,
which will be still denoted by ¢. In order to verify (3.6) we will need the following
estimates for the rates of growth of sojourn times.

Lemma 3.1. There exists T > 0 such that for every t > T and every At € (0,1]
one has

n(t + At) < n(t) exp (%) +2, (3.8)
n(t + At) > n(t) exp <1it6) — 4. (3.9)

Proof. By Lemma 2.1 we have nf"™(yo) — 1 as n — oo; thus, we can fix ng € N so
that if n > ng then 1 —e < nf"(yg) < 1 +e. We claim that the lemma holds for
T=ux0+yo+ -+ " yo). Let us prove (3.8) (the proof of (3.9) is analogous).
Fix t > T and At > 0. By definition, 2o +yo + - -+ f*® = (yo) > ¢, and n(t) > ny.
If

(1-¢) [%JFJFﬁ} > A,

then
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and so m > n(t + At). Since

(1-2) [L++LJ 2(1—5)/"7”1@_(1_5)1%(”1—‘1),

n(t) m— & n(t)
this shows that if (1—¢) log(%) > At then m > n(t+ At), which proves (3.8). O
We are now able to compare (asymptotically) the values of [ ¢dj,+ and [ odn, .

First note that . '
Sizo[n(i+ 3) = n(i)]

SOd/an* < )
/ FTL X I+ 1) — n(i)]
and so ( 2 )
n(k+1/2) —n(k
li dpiys < i : 1
lﬁﬁq/¢“k—lﬁﬁpn%+n—n®) 10
Now from (3.8) one gets (for k big enough)
1
< -
n(k+1/2) < n(k)exp <2(1+€)> +2,
and thus
1
k+1/2) —n(k) <n(k — ) -1 2. A1
-+ 1/2) = (k) < 0l [exp (5 ) ~1 + (3.11)
On the other hand, (3.9) gives
1
k+1)>n(k —4
i+ 1) 2 ) exp (32 ) - 4
and therefore
1
k+1)—n(k) >n(k - 1| -4 3.12
i+ 1) = (k) = 00 [exp (52 ) -1 .12

By combining (3.11) and (3.12) one concludes

: n(k+1/2) —n(k) _ =P (2<11—a>) -1
lim sup Gt 1) —n(k) < : )
k—o0 n exp (m) — 1

and by (3.7) and (3.10) this gives

1
li dppp < =.
lﬁﬁﬁ/w“k 2

Now let us deal with the sequence (i, )r. Remark that, for k& big enough,

/ Sisoln(i+5 —8) —n(i+6) 1]
© dpin, > & ) ) )
n(1/2)+ 32, [n(i +1/2) —n(i — 1/2)]
and since both (n(k+1/2—6) —n(k+4)) and (n(k+1/2) —n(k —1/2)) go to
infinite as k — oo, this gives

n(k+1/2—-19) —n(k+9)
n(k+1/2)—n(k—1/2)
By (3.8) and (3.9) we have (for k big enough)

1/2-46 5
— <
T2 ) 4, n(k+5)_n(k)exp(1_€)+2,

likminf/gadunk > likminf (3.13)

n(k+1/2—68) > n(k)exp (
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and so
n(k +1/2—6) — n(k + 6) > n(k) {exp (%i‘j) — exp (1 f E)] — 6. (3.14)
Analogously,
n(k + 1/2) < n(k) exp (ﬁ) +2,
n(k —1/2) > n(k) exp (—ﬁ) ~2exp (—ﬁ) ,
and so
n(k+1/2) —n(k—1/2) < n(k) [exp <2(+_8)> ~exp <_ﬁ)]
424 2exp (_2(1;_5)) . (3.15)

By combining (3.14) and (3.15) this shows that

liming MEF1/2=0) —n(k+d) P (1{2[86) —exp (%)

k—oo n(k+1/2) —n(k—1/2) _eXp(ﬁ)—eXp(—ﬁ)7

and by (3.7) and (3.13) this allows us to conclude that
tmint [ ¢ dn, >
iminf [ @ dpn, > 5.

3.1. A general remark. Let F : S? — S? be any continuous map of the form
F(z,y) = (x + y (mod 1), f(y)), where f : [-1,1] — [—1,1] is a strictly increasing
homeomorphism satisfying f(—y) = —f(y) for all y. For each § € R denote by Ry
the rotation by angle ¢ in the first coordinate, that is Ry(x,y) = (x + 0 (mod 1), y).
Note that Ry (preserves the Lebesgue measure and) centralizes F, that is Ry o
F = Fo Ry If yis a F-invariant measure, then for every n > 1 the measure
Ry (u) is F-invariant as well. (Here Rj(p) is the probability measure defined by
Ry (p)(A) = u(R,"(A))). One easily checks that

Ry (B(n)) = B(Rg (1))- (3.16)
Since Ry preserves the Lebesgue measure,
Leb (B(p)) = Leb (Rg (B())) = Leb (B(Rf (1)))- (3.17)

Therefore, if p is a physical measure for F', then Rj(u) is also a physical measure
for F'. A simple argument shows that in fact a little bit more is true.

Proposition 3.2. If u is a physical measure then Rg(u) = p for all 0.

Proof. Fix 8 € R\ Q. If we assume that Ry(n) # p, then the measures Ry (p) are
two by two distinct physical measures for F, and by (3.17) their basin have the
same positive Lebesgue measure for all n € N, which is absurd. Hence, Ry(u) = u
for all # € R\ Q. Finally, by continuity, or just because every rational number is
the sum of two irrationals, p is invariant by the rational rotations as well. O
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Now assume that 0 < f(y) <y for all y € (0,1). In this case, the w-limit of the
orbit of every point in S? \ {Py, Ps} is contained in the equator S!. Hence, the
support of every physical measure is contained in S', and by the Proposition 3.2 the
only possible physical measure is the Lebesgue measure on S'. This can be applied
to the map f(y) = y — y? to give another proof of the non-existence of physical
measure for Fy.

Proposition 3.3. If a = 2 then Leb g is not a physical measure for F,.

The proof of this Proposition can be made by a direct computation. Indeed, one

can show that % (e::f) = :fl is the density of the limit measure as k — oo along
the sequence
1

m [5(10"”0) + 5F($0,y0) +ot 5F"(k)71(101y0)} :

4. Case a > 2: Lebg: is a physical measure. Let us fix o > 2 and let us denote
F = F, and f = f,. According to Theorem 2.2 of [2], in order to prove that a
sequence of probability measures u, on S? converges to some probability measure
p in the weak* topology, it is enough to verify that, for (the projection on S? of)
each square A = [a,b] X [¢,d] C [0,1] x [—1, 1], one has u,(A) — p(A). In our case
we have to deal with the measures ;1 = Leb g1 and

n—1
1
fn = — E OFi(z)s
Jj=0

where z belongs to S?\ S! and is different from the poles. Since F' is symmetric with
respect to the equator and S! separates the dynamics between the two hemispheres,
we can restrict our analysis to squares of the form A = [a,b] X [d’, d], where d’ > 0,
and to points z = (zg,yo) in [0,1] x (0,1). Therefore, denoting z; = F7(z), we are
reduced to showing that, for every d > d’ > 0 and all a < b in [0, 1],

n—1
lim. % S 6psoy ([0, ] % [ d]) = Leb g ([a,b] x [, d]). (4.18)
=0

Since f"(y) — 0 as n — o0, if d > 0 then f"(yo) < d for every n € N sufficiently
large. In particular, if d > 0 (and also if @ = b) then (4.18) is trivially satisfied:
both sides are equal to zero.
To summarize, if we denote y, = f™(yo), then we need to verify that, for all
a <bin [0,1],
n—1
1

lim — 5y.(la,b]) =b— a. 4.19

ninéon;o w(ab) =b—a (4.19)
To do this let us define again, for ¢t > 0,

n(t) =min{n >0 : zo+yo+---+ " (yo) >t}

The a priori bounds for the rate of growth of n(t) now take the following form.
Lemma 4.1. Given ¢ > 0 there exists T > 0 such that for every t > T and every
At > 0 one has, for ¢ =1/(a —1)Y/(@=1),

At(Oé — 2) a—2 [ @72

n(t + At) < m + n(t)ﬁ + 2, (420)
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% + ) - 25| ve (4.21)

n(t + At) >
Proof. By Lemma 2.1 we have n'/(*=1 f*(y5) — ¢ as n — co. Thus, we can find
no € N so that if n > ng then

(1—e)c n (14+¢e)c
1/ a—1) < f"(yo) < /-1

We claim that the lemma holds for T = zg + yo + -+ + f™ !(yo). Let us prove
(4.20) (the proof of (4.21) is analogous). Fix ¢t > T and A¢ > 0. By definition,
zo+yo+ -+ PO (y) > t, and n(t) > ng. If

1 1
(1-e)e W*'*m} > At
then
g e (-e)e . (L—ee
zo+ Yo+ 7 (o) = t+ (V@D T DD 2 t+ At,

and so m > n(t + At). Since

1 1 - m=l s
we D Tt o yye T 2 L e

this shows that if

(I—e)e(a—1) a2 a2
e — (- )T - ()| 2
then m > n(t + At), which proves (4.20). O

Now denote
me=#{neN: zo+yo+-+ " yo) € [a+k,b+k]},
my=#{neN: zg+yo+-+f"""yo) Ela+tk—1a+k]},
my*=#{neN: zo+yo+--+f""(yo) €la+k,a+k+1]}.
Since f"(yo) — 0 as n — oo, the sequences (my), (m}) and (m}*) go to infinity

with k. Thus, in order to show (4.19), it is enough to verify that
lim m—f: lim m—*k*:b—a.
n—oo My n—00 My,
To do this first note that
mr >nb+k)—nla+k)=nla+k+(b—a)) —nla+k),
mp <nla+k)—nla+k—1)+1.
By Lemma 4.1, given € > 0 one has, for k sufficiently large,
2

a—1
b—a)(a— a=2]a=-2
- |:((1+€))c((0t—21)) (n(a+ k) - 2)%1} — (n(a

oy

_2)

a—1

a2 a— =2 '
n(a+k)—[(n(a+k)—2)a*1—(l_T(i_l)} 2+1
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Since n(a + k) — oo as k — oo, this gives

1
2

+(n(a+k)—2)5 | "7 — (n(a

(b—a)(a—2) a2
(14e)e(a—1)

+
o~
~
I
[\)
~

likm inf m_;: > likm inf [
—o0 MM —00 a—2 o a—2
; (n(a+k) = 2) = [(n(a+ k) = 2)55 - =522 ]

Now recalling that, if u, v are real numbers and v > 0 then

/v
fi L0

r—00 I — (;zj’Y — 1;)1/'7 - v
and applying this fact to
(b—a)(a—2) a—2 a—2
U= T~ 7 v V=TT~ 7 1\ Y=
(14+¢e)e(a—1) (1—¢e)e(a—1)
one concludes that the right hand side expression in (4.22) is equal to (b —a)(1 —
€)/(1+¢€). Thus,

a—1’

1—
liminfm—I:Z(b—a)( E),
k—o0 my 1+¢

and since this inequality is true for all € > 0, one deduces that

liminf —% > b — a. (4.23)
k—oo mk

On the other hand, note that
mg <nb+k)—nla+k)+1=nla+k+(b—a))—nla+k)+1,
my >n(a+k) —n(a+k—1).
Thus, given € > 0 one has, for k large enough,

b—a)(a— a2 =
[75175))5@—21)) +nla+h) ‘H}

m
k<
my

a—1
a2 . a—2
(TL(G + k) — 2) — (TL(G + k) — 2) a—1 — m}
As in the previous case, by passing to the limit in this inequality one deduces that

1
limsupm—ljg(b—a)( +€),
k—oo My 1—¢

and since € > 0 is arbitrary this shows that
lim sup m_;: <b-—a. (4.24)
k—oo My
By combining (4.23) and (4.24) one finally obtains
lim & —p—q.
k—oo m,’;

We leave to the reader the proof of the (analogous) equality

which together with the previous one allows to finish the proof of our Theorem.
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