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Abstract

We consider the Fröbenius–Perron semigroup of linear operators associated

to a semidynamical system defined in a topological space X endowed with

a finite or σ–finite regular measure. We prove that if there exists a faithful

invariant measure for the semidynamical system, then the Fröbenius–Perron

semigroup of linear operators is C0–continuous in the space L1
µ(X) . We also

give a geometrical condition which ensures C0–continuity of the Fröbenius–

Perron semigroup of linear operators in the space Lp
µ(X) for 1 ≤ p < ∞, as

well as in the space L1
loc.

1 Introduction

An important problem in the study of the dynamics of nonsingular transformations

is to know if they admit an absolutely continuous invariant measure (acim). For

interval maps, for example, we have a theorem of Lasota-Yorke [5], which roughly
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states that if the map is smooth by parts (Cr, with r ≥ 2 ) and expanding, then it

admits an acim, and with some additional conditions it is exact with respect to this

acim (see [5] for more details); extensions of this result have been obtained for the

n–dimensional case (see [2]). When we deal with a continuous semidynamical or a

dynamical system (i.e., with a semi–flow or a flow) the problem is more complicated.

A useful technical tool for study the problem of the existence of an acim is the

Fröbenius–Perron operator (see [2], [4]). Let X be a topological space and let µ be a

regular measure defined on the Borel σ–algebra A of X (see below for definition),

if τ : X → X is a nonsingular transformation then the Fröbenius–Perron operator

associated to τ , denoted by Pτ (in fact Pτ depend also on µ , and some time we

use the notation Pτ,µ in order to indicate such dependence on the measure), is a

linear operator, naturally defined in the space L1
µ(X). The central point here is that

an invariant density, that is, a non negative measurable function of unit norm and

fixed for the Fröbenius–Perron operator corresponds to a density of an acim for the

transformation τ (see Section 2.4).

Let τt : X → X be a semidynamical system. Denote by Pt the Fröbenius–

Perron operator associated to the transformation τt. The family {Pt}t≥0 = {Pt,µ}t≥0

satisfies






P0 = Id,

Pt+s = Pt ◦ Ps, for all t, s ≥ 0.

For a semigroup of continuous linear operators defined in the space L1
µ(X) a

central problem is to know if the semigroup is C0–continuous, that is, if the following

holds:

lim
t→0

Pt(f) = f, for all f ∈ L1
µ(X). (1)

If this is the case, we may consider the infinitesimal generator of the semigroup

which is defined by

A(f) = lim
t→0

Pt(f)− f

t
, (1′)
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for elements f ∈ L1
µ(X) for which the above limit exists (see [3], [6]). It is known

that a function f : X → R satisfies Pt(f) = f , for all t ≥ 0, if and only if A is

defined for f and the differential equation A(f) = 0 is satisfied. In this way, the

problem of finding or proving the existence of an acim for the semidynamical system

is equivalent to the problem of find or prove the existence of a nontrivial zero for

the infinitesimal generator of the Fröbenius–Perron semigroup of linear operators

associated, provided that this semigroup is strongly continuous.

Let V be a smooth vector field defined in a smooth manifold, and let {τt}t∈R be

it flow. In this case, the Fröbenius–Perron operator, for f of class C1 is given by the

equation A(f) = ∇(fV ) (where ∇ denote the divergence operator) . We recover

in this way a well know theorem of Liouville which states that a flow preserves the

canonical measure in the manifold if and only if the vector field has divergence equal

to zero. The operator A defined in equation (1’) can be viewed as a generalization of

the divergence operator for continuous semiflows for which the associated Fröbenius–

Perron semigroup of linear operators is C0–continuous.

In this paper we study general conditions that ensures this C0–continuity.

In section 2 we establish the notation and recall some basic results from semi-

group theory, and definition of the Fröbenius–Perron and some of its properties.

In Section 3 we consider the case in which we know a priori that there exists a

faithful acim for the system, that is, an acim with a positive density. In that case,

we prove the following result (theorem 2).

Theorem Let {τt}t≥0 be a continuous semidynamical system. Suppose that {τt}t≥0

has a faithful acim. Then the associated Fröbenius–Perron semigroup of linear op-

erators {Pt,µ}t≥0 is C0–continuous in the space L1
µ(X).

This theorem implies that the problem of find a faithful acim is equivalent to

the problem of find a zero for the infinitesimal generator.

Since the problem to deal with is exactly the problem of the existence of the

acim, we have to search an intrinsic property of the flow that ensures the strong
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continuity of the semigroup. The condition is: there exist T > 0 such that

µ(τ−1
t (A))

µ(A)
≤ M for all t ≤ T and for all A ∈ A . (2)

To understand condition (2) we may consider the case of a dynamical system. In

that case each transformation τt : X → X has inverse, and the associated Fröbenius–

Perron operator is given by

Pt(f) = (f ◦ τ−t) · J(τ−t), (3)

where J(τ−t) is the density of the measure (τt)∗(µ) (where (τt)∗µ(B) = µ(τ−1
t (B)

for B medible), that is,

µ(τ−1
t (A)) =

∫

A
J(τ−t)dµ

for more details see [4].

Thus if we have an upper bound and well behaviour for J(τ−t) near zero, then

we use the dominated convergence theorem to prove that condition (1) hold for

continuous functions. The extension of the result for arbitrary integrable functions

is obtained using the fact that the set of continuous functions is dense in the space

of integrable functions.

For a semidynamical system, we do not have an explicit expression like (3) for

the associated Fröbenius–Perron operator. However, a bound of J(τ−t) can be in-

terpreted as an estimative of type that appear in condition (2).

In Section 4 we prove that, under general hypotheses, condition (2) holds if and

only if the Fröbenius–Perron semigroup of linear operators can be defined in the

space Lp
µ(X), and it is C0–continuous in that space (see theorems 3 and 4.)

In Section 5 we prove that condition (2) also ensures strong continuity in the

space L1
µ(X) when (X,A, µ) is a probability space (theorem 5). The precise state-

ment of the main result is the following (for the concepts involved, see Section 2).
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Theorem Let X be a topological space endowed with a regular probability measure

µ . Let {τt}t≥0 be a continuous proper semidynamical system defined on X . If the

semidynamical system satisfies (2), then the associated Fröbenius–Perron semigroup

of linear operators is C0–continuous in L1
µ(X).

Finally, in order to do this work more complete, in section 6 we deal with the

L1
µ,loc(X) case. The presentation is quite informal since there are some technical

difficulties derived from the fact that L1
µ,loc(X) is only a locally convex space and

not a Banach space (we must add some hypotheses in this case in order to make the

semigroup approach to the acim problem available).

2 Basic Results

In this section we give a survey of definitions, results and notations that are necessary

for the rest of the paper.

2.1 Measure Theory

Let X be a topological space and let A be its Borel σ–algebra. Let µ be a measure

defined over A. We say that µ is regular if for all A ∈ A we have

µ(A) = sup{µ(K) : K ⊂ A, K compact} = inf{µ(C) : A ⊂ C, C open}.

We note that if X is a metric space then a probability measure defined on

the Borel σ–algebra is regular. In general, if a measure µ is regular then the set

of continuous functions with compact support is dense in the space Lp
µ(X), for all

1 ≤ p < ∞.

2.2 Semidynamical Systems

Let X be a topological space. A family {τt}t≥0 of continuous transformations τt :

X → X is a semidynamical system if the following conditions are satisfied:
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i) τ0 = Id,

ii) τt ◦ τs = τt+s for all t, s ≥ 0, and

iii) the map [0,∞]×X → X given by (t, x) → τt(x) is continuous.

If each transformation τt has a continuous inverse τ−t then the family {τt}t∈R is

a continuous flow. However, for general semidynamical systems, the maps τt may

no necessarely have inverse.

We say that a semidynamical system {τt}t∈R is proper if, for each compact set

K ⊂ X and for each t > 0 the set ∪s≤tτ
−1
s (K) is compact.

2.3 Semigroups in Banach Spaces

Let L be a Banach space with respect to a norm ‖·‖. A family {Tt}t≥0 of continuous

linear operators Tt : L → L ( t ≥ 0 ) is called a semigroup of linear operators if the

following conditions are satisfied:






T0 = Id,

Tt+s = Tt ◦ Ts, for all t, s ≥ 0.

For more details see [6] or [3]. We say that a semigroup {Tt}t≥0 of linear operators

is C0–continuous, if

lim
t→0

‖Tt(f)− f‖ = 0 for all f ∈ L.

When a semigroup {Tt}t≥0 is C0–continuous, there exist constants M ≥ 1 and

w ≥ 0 such that, for all f ∈ L we have

‖Tt(f)|| ≤ Mewt‖f‖.

If {Tt}t≥0 is a semigroup defined on L, then the adjoint family {T ∗}t≥0 is a

semigroup defined on the dual space L∗. By a duality theorem we have that if

{Tt}t≥0 is C0–continuous and L is reflexive, then {T ∗
t }t≥0 is C0–continuous in L∗

(see [6], Corollary 10.6, page 41).
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2.4 Fröbenius–Perron Operator

Let (X, µ,A) be a measure space. We say that a transformation τ : X → X is

non singular if for all A ∈ A such that µ(A) = 0, we have µ(τ−1(A)) = 0. If a

transformation τ : X → X is nonsingular then associated to it there exists a linear

operator Pτ = Pτ,µ : L1
µ(X) → L1

µ(X), called Fröbenius–Perron operator which is

characterized by the relation:

∫

A
Pτ (f)dµ =

∫

τ−1(A)
fdµ (4)

for all f ∈ L1
µ(X) and all A ∈ A.

It is well known (see [1], [4]) that a probability measure µ on X is τ–invariant

(that is, µ(τ−1(A)) = µ(A) for all A ∈ A) if and only if Pτ (1) = 1 (this is also true

for σ–finite measure spaces, but in that case there is a problem with the space where

the Fröbenius–Perron operator is defined, as we shall see). In general, τ preserves a

measure ν = fdµ, with f ∈ L1
µ(X), if and only if Pτ (f) = f . It is also well known

that the Fröbenius–Perron operator is a linear contraction in the L1
µ(X) norm,

that is, ||Pτ ||L1
µ
≤ 1 (see [4], [2]). Moreover, for f ∈ L1

µ(X) and a.e. x ∈ X , we

have |P (f)(x)| ≤ P (|f |)(x). On the other hand, if we change the measure µ by an

absolutely continuous one given by dν = gdµ, then the change in Fröbenius–Perron

operator is given by

Pτ,ν =
Pτ,µ(f · g)

g
. (5)

Another important property of the Fröbenius–Perron operator is given by the

equality
∫

X
Pτ (f) · gdµ =

∫

X
f · (g ◦ τ)dµ, (6)

valid for all f ∈ L1
µ(X) and all g ∈ L∞

µ (X). Equation (6) permit us define a linear

operator Kτ : L∞
µ (X) → L∞

µ (X) given by Kτ (g) = g ◦ τ . The operator Kτ is well

defined if τ is a nonsingular transformations. This operator is called the Koopman

operator. For more details about these concepts see [1] or [4].
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If we have a semidynamical system {τt}t≥0 such that each transformation τt is

nonsingular, then we denotes the family of Fröbenius–Perron operators associated

by Pt = Pτt , this is a semigroup of continuous linear operators in the space L1
µ(X)

(see [4]). We will also use the notation Kt for the Koopman operator Kτt .

We note that Fröbenius–Perron operator may also be defined and is bounded in

other spaces of functions if the transfomation τ has a good behaviour, for example,

Lp
µ(X) spaces or BV (X) , the space of functions of bounded variation. For example,

in Section 4 we consider this operator in Lp
µ(X) spaces, and we prove that the

geometrical condition (3) ensures continuity of each operator Pt (and also the C0–

continuity of the semigroup {Pt}t≥0 in the space Lp
µ(X)). We note that if Pt is

continuous in Lp
µ(X), then the duality equation (6) is valid for all f ∈ Lp

µ(X) and

for all g ∈ Lq
µ(X), with 1

p
+ 1

q
= 1, that is, Kt is the adjoint operator of Pt.

2.5 Conditional Expectation and Fröbenius–Perron Opera-

tor

Let (X,A, µ) be a probability space. Suppose τ : X → X preserves µ, then we have

another way of introducing the Fröbenius–Perron operator associated to τ . This is

given for f ∈ L1
µ(X) by the equality

Pτ (f) ◦ τ = E(f, τ−1(A)),

where the expression on the right hand denotes the conditional expectation of f

with respect to the σ–algebra τ−1(A) . In Section 3 we use this approach and the

following result of convergence that arises in martingale theory (see [1], page 81).

Theorem 1 Let {An}n∈N be a collection of σ–algebras such that An ⊂ An+1, for

all n. Then E(f,An) converges to E(f,A∞) , in the L1 sense, where A∞ denotes

the σ–algebra generated by all the An.
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3 Strong continuity with an absolutely continu-

ous invariant measure

Let X be a topological space and let µ be a regular probability measure defined

on the Borel σ–algebra on X . In this section we consider a nonsingular semi–

dynamical system {τt}t≥0 defined over X . We prove that if there exists a faithful

acim (an acim of positive density), then the associated Fröbenius–Perron semigroup

is C0–continuous in L1
µ(X). We first prove two lemmas.

Lemma 1 Suppose that {τt}t≥0 has an acim ν such that dν = gdµ, with g > 0

(a.e.). Then, for each f ∈ L1
ν(X) , we have, in the L1

ν(X) sense, that

lim
t→0

(Pt,ν(f) ◦ τt) = f.

Proof. The sequence of σ–algebras {At}t≥0, where At = τ−1
t (A) for all t ≥ 0 , is

increasing as t goes to zero. By the martingale convergence theorem, we have, for

f in L1
ν(X),

lim
t→0

(Pt,ν(f) ◦ τt) = E(f,A∞),

where A∞ is the σ–algebra generated by all the σ–algebra At. Thus, we must

prove that A∞ is equal to A. For this, let A be an open set. By continuity of the

semidynamical system {τt}t≥0 , the function |XA ◦ τt − XA| converges pointwise to

zero as t goes to zero and by the dominated convergence theorem, we have

ν(τ−1
t (A)△(A)) =

∫

X
|XA ◦ τt − XA|dν

converges to zero as t goes to zero. Thus, for each n ∈ N , we may consider a

sequence tn > 0 such that ν(τ−1
tn (A)△(A)) < 1/2n , from this it is easy to see that

ν(∪∞
n≥mτ

−1
tn (A)△(A)) < 1/2m−1. Hence

ν((∩∞
m=1 ∪

∞
n≥m τ−1

tn (A))△(A)) ≤ ν(∩∞
m=1(∪

∞
n≥mτ

−1
tn (A)△(A))) = 0.
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This implies that A ∈ A∞, and since A is an arbitrary open set, this implies

that A∞ is equal to A, which completes the proof of Lemma 1.

Lemma 2 Suppose that {τt}t≥0 has a faithful acim ν given by dν = gdµ, with

g ∈ L1
µ(X) and g > 0 (a.e.). Then, for each f ∈ L1

ν(X), we have, in the L1
ν(X)

sense, that

lim
t→0

Pt,ν(f) = f.

Proof. Let ε be an arbitrary positive number. We take a sequence {fn}n∈N of

bounded continuous functions that converges to a function f ∈ L1
ν(X) and choose

n0 ∈ N such that ‖fn0
− f‖ ≤ ε/4 . By the invariance of ν and since the operator

Pt,ν is a linear contraction, we have

‖Pt,ν(f)− f‖L1
ν

≤ ‖Pt,ν(f)− Pt,ν(fn0
)‖L1

ν
+ ‖Pt,ν(fn0

)− fn0
‖L1

ν
+ ‖fn0

− f‖L1
ν

≤ 2‖f − fn0
‖L1

ν
+ ‖Pt,ν(fn0

) ◦ τt − fn0
◦ τt‖L1

ν

≤
ε

2
+ ‖Pt,ν(fn0

) ◦ τt − fn0
‖L1

ν
+ ‖fn0

− fn0
◦ τt‖L1

ν
.

For small t, by Lemma 1 we have ‖Pt,ν(fn0
)◦τt−fn0

‖L1
ν
≤ ε/4 . Now by continuity

of the semidynamical system and by the dominated convergence theorem, we have

limt→0 ‖fn0
− fn0

◦ τt‖L1
v
= 0. Thus, for t small we have ‖fn0

− fn0
◦ τt‖L1

ν
≤ ε/4 .

This implies, for t small, that ‖Pt,ν(f) − f‖L1
ν
≤ ε, which completes the proof of

Lemma 2.

Theorem 2 Suppose that the semidynamical system {τt}t≥0 has a faithful acim.

Then the semigroup {Pt,µ}t≥0 is C0–continuous in L1
µ(X).

Proof. Let ν the faithful acim given by dν = gdµ, with g ∈ L1
µ(X) and g > 0

(a.e.). Let f ∈ L1
µ(X). Then f

g
∈ L1

ν(X), and we have, by equality (5), that

‖Pt,µ(f)− f‖L1
µ

=
∫

X
|Pt,µ(f)− f |dµ

=
∫

X

∣

∣

∣

∣

∣

gPt,ν

(

f

g

)

− f

∣

∣

∣

∣

∣

dµ

=
∫

X

∣

∣

∣

∣

∣

Pt,ν

(

f

g

)

−
f

g

∣

∣

∣

∣

∣

dν.
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By Lemma 2 the last quantity converges to zero as t goes to zero, which proves

the theorem.

4 Strong Continuity in Lp

In this section we consider a semidynamical system defined over a topological space

X provided of a regular measure µ defined on its Borel σ–algebra, and prove that

condition (2) is equivalent to strong continuity of the associated Fröbenius–Perron

semigroup defined over the space Lp
µ(X).

We say that a semidynamical system is strongly nonsingular if satisfies condition

(2). It is easy to see that the following conditions for being strongly nonsingular are

equivalent:

i) For each t > 0, there exists Mt such that

µ(τ−1
s (A)) ≤ Mt µ(A) (7)

for all s ≤ t and all A ∈ A.

ii) There exist T > 0 and M = MT > 0 such that

µ(τ−1
s (A)) ≤ MT µ(A) (8)

for all A ∈ A and all s ≤ T .

In fact, condition (7) implies trivially (8), and if condition (8) is assumed, then

condition (7) holds by putting Mt = M
t
T
+1.

Finally, it is easy to see that every strongly nonsingular semidynamical system

is nonsingular.

Theorem 3 Let {τt}t≥0 be a nonsingular semidynamical system such that its as-

sociated semigroup of Fröbenius–Perron operators {Pt}t≥0 is a C0–continuous semi-
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group of bounded linear operators in the space Lp
µ(X) for some 1 < p < ∞. Then

{τt}t≥0 is strongly nonsingular.

Proof. By the hypothesis, the semigroup of linear operators {Pt}t≥0 is a C0–

semigroup over a reflexive space. Thus, the semigroup of Koopman operators

{Kt}t≥0 is a C0–semigroup in the space Lq
µ(X), where q = p

p−1
is the conjugate of p

(see [6], Corollary 10.6, page 41). Therefore, there exist constants M ≥ 1 and w > 0

such that, for all f ∈ Lq
µ(X) we have that ‖Kt(f)‖Lq

µ
≤ M ewt‖f‖Lq

µ
. Now, if µ(A)

is finite then XA ∈ Lq
µ(X) and ‖Kt(XA)‖Lq

µ
≤ M ewt‖XA‖Lq . Thus, ‖Xτ−1

t (A)‖Lq
µ
≤

M ewt(µ(A))
1

q and from this it follows that µ(τ−1
t (A)) ≤ (M ewt)q µ(A), which

proves our theorem.

If a measure µ is regular and the semidynamical system {τt}t≥0 is proper, then

we have the converse of the above result.

Theorem 4 Let µ be a regular measure defined on X . If {τt}t≥0 is a proper and

strongly nonsingular semidynamical system. Then, for all 1 < p < ∞, the associated

Fröbenius–Perron semigroup {Pt}t≥0 is a C0–semigroup of linear bounded operators

in the space Lp
µ(X).

The idea for the proof of theorem 4, is prove that condition (7) ensures strong

continuity for the dual semigroup {Kt}t≥0 in the dual space Lq
µ(X). For this we first

prove two lemmas.

Lemma 3 Under the hypotheses of theorem 4, we have ‖Ks(f)‖Lq
µ
≤ M

1/q
t ‖f‖Lq

µ

for all f ∈ Lq
µ(X) and all s ≤ t.

Proof. Let f ∈ Lq
µ(X) be a simple function given by f =

∑n
i=1 λiXAi

, with

Ai∩Aj = ∅ , for i 6= j , then we have ‖f‖Lq
µ
= (

∑n
i=1 |λi|

qµ(Ai))
1/q and ‖Kt(f)‖Lq

µ
=

(
∑n

i=1 |λi|
qµ(τ−1

s (Ai)))
1/q. On the other hand, by condition (7) we have, for s ≤

t, that (
∑n

i=1 |λi|
qµ(τ−1

s (Ai)))
1/q ≤ (

∑n
i=1 |λi|

qMtµ(Ai))
1/q , and this implies that

‖Ks(f)‖Lq
µ
≤ M

1/q
t ‖f‖Lq

µ
. Finally, since the set of simple functions is dense in the

space Lq
µ(X), the lemma follows.

12



Lemma 4 If the hypotheses of theorem 3 are satisfied then the Koopman semigroup

of operators {Kt}t≥0 is a C0–continuous semigroup of linear bounded operators in

the space Lq
µ(X).

Proof. Let f ∈ Lq
µ(X) and let ε > 0. We take a sequence {fn}n∈N of continuous

functions with compact support, say K, such that limn→∞ ‖fn − f‖Lq
µ
= 0 and we

choose n0 ∈ N such that

‖f − fn0
‖Lq

µ
≤

ε

2(M
1

q + 1)
,

where M = MT is fixed. By continuity of the Koopman semigroup, the function

Ks(fn0
) − fn0

converges pointwise to zero as s goes to zero. If K is the support

of fn0
then, since the semidynamical system is proper, the set K̃ = ∪s≤tτ

−1
s (K) is

compact. Now, it is clear that supp(Ks(fn0
) − fn0

) ⊂ K̃ for s ≤ t, and by the

dominated convergence theorem we have lims→0 ‖Ks(fn0
) − fn0

‖Lq
µ
= 0 . Thus, we

may take t0 > 0 such that, for all s ≤ t0, we have

‖Ks(fn0
)− fn0

‖Lq
µ
≤

ε

2
.

Using the above inequalities, we have, for s ≤ min{T, t0}, that

‖Ks(f)− f‖Lq
µ

≤ ‖Ks(f)−Ks(fn0
)‖Lq

µ
+ ‖Ks(fn0

)− fn0
‖Lq

µ
+ ‖fn0

− f‖Lq
µ

≤ (M
1

q + 1)
ε

2(M
1

q + 1)
+

ε

2
= ε

which proves the lemma.

Proof of theorem 4. It follows direct by the duality theorem (see sections 2.3 and

2.4).

5 Strong continuity in L1

One of the most important applications of Fröbenius–Perron operator arise in prob-

ability spaces by considering its action over the space L1
µ(X). For that spaces we

have the following result.
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Theorem 5 Let X be a topological space endowed with a regular probability mea-

sure µ and let {τt}t≥0 be a proper semidynamical system. If the semidynamical

system is strongly nonsingular, then the associated Fröbenius–Perron semigroup of

operators {Pt}t≥0 is C0–continuous in the space L1
µ(X).

Proof. Let f ∈ L1
µ(X) and ε > 0. We fix p > 0 and consider a sequence {fn}n∈N

in Lp
µ(X) such that limn→∞ ‖fn − f‖L1

µ
= 0. Since µ(X) = 1 we have

‖Pt(f)− f‖L1
µ

≤ ‖Pt(f)− Pt(fn)‖L1
µ
+ ‖Pt(fn)− fn‖L1

µ
+ ‖fn − f‖L1

µ
,

≤ 2‖fn − f‖L1
µ
+ ‖Pt(fn)− fn‖L1

µ
,

≤ 2‖fn − f‖L1
µ
+ ‖Pt(fn)− fn‖Lp

µ
.

We choose n0 such that ‖f − fn0
‖L1

µ
≤ ε/3. By theorem 3 (see also remark 1),

there exists tε > 0 such that ‖Pt(fn0
)− fn0

‖Lp
µ
≤ ε/3 for all t ≤ tε. Therefore, for

t ≤ tε we have ||Pt(f) − f ||L1
µ
≤ ε. Since f and ε are arbitrary, this finishes the

proof.

The previous theorem is useful for compact metric spaces of finite measure, in

that case {τt}t≥0 is proper. For noncompact or unbounded metric spaces with non–

finite measure we assume that the system is strongly continuous over bounded sets,

that is, we assume that for each ball

B = B(x0, r) = {x ∈ X : d(x, x0) < r}

there exists a constant M = M(x, r) and T = T (x, r) such that

µ(τ−1
t (A) ∩B) ≤ M µ(A ∩B) (9)

for all t ≤ T and A ∈ A. Now we have the following theorem.

Theorem 6 Under the hypotheses of theorem 5, suppose also that the above con-

dition (9) is true and the measure is finite over bounded sets. Then the Fröbenius–

Perron semigroup is C0–continuous in L1
µ(X).
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The proof of theorem 6 is based in a reduction of it to theorem 5 in each ball

B = B(x, r). For that, we define a new measure µ̃ in X by putting

µ̃(A) = µ(A ∩B).

This new measure is finite, and the semidynamical system {τt}t≥0 is strongly

nonsingular with respect to µ̃. By theorem 4, we have, for each f ∈ L1
µ̃(X) , that

lim
t→0

P̃t(f) = f (10)

in the L1
µ̃ sense, where P̃t = Pt,µ̃. Using this we prove the following.

Lemma 5 Let f ∈ L1
loc(X, µ) be a function of compact support K. Then

lim
t→0

∫

K
|Pt(f)− f |dµ = 0.

Proof. We take a ball B = B(x, r) containing K and we have

∫

K
|Pt(f)− f |dµ ≤

∫

B
|Pt(f)− f |dµ ≤

∫

B
|Pt(f)− P̃t(f)|dµ+

∫

B
|P̃t(f)− f |dµ̃.

By (10), we have to prove that

lim
t→0

∫

B
|P̃t(f)− Pt(f)|dµ = 0.

Let k be a positive integer and let Ck,t be the set

Ck,t =
{

x ∈ B : |Pt(f)(x)− P̃t(f)(x)| ≥
1

k

}

.

We claim that µ(Ck,t) converges to zero when t goes to zero, for all k . To prove

the claim we consider the sets

C1
k,t =

{

x ∈ B : Pt(f)(x)− P̃t(f)(x) ≥
1

k

}

,
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and

C2
k,t =

{

x ∈ B : Pt(f)(x)− P̃t(f)(x) ≤
−1

k

}

.

By (5) we have

∫

C1

k,t

Pt(f)dµ−
∫

C1

k,t

P̃t(f)dµ =
∫

τ−1

t (C1

k,t
)
fdµ−

∫

τ−1

t (C1

k,t
)
fdµ̃,

and from this we have

µ(C1
k,t)

k
≤
∫

τ−1

t (C1

k,t
)−B

fdµ.

As in the proof of lemma 1, and using the fact that the system is proper, it is not

difficult to see that µ(τ−1
t (B) − B) converges to zero when t goes to zero, which

implies that µ(C1
k,t) converges to zero. By the same way, µ(C2

k,t) converges to zero

with t, and this proves our claim.

To finish the proof of the lemma 5, let ε > 0. We choose k ≥ 2µ(B)
ε

and we have

∫

B
|Pt(f)− P̃t(f)|dµ =

∫

Ck,t

|Pt(f)− P̃t(f)|dµ+
∫

B−Ck,t

|Pt(f)− P̃t(f)|dµ

∫

B
|Pt(f)− P̃t(f)|dµ ≤

ε

2
+
∫

Ck,t

|Pt(f)− P̃t(f)|dµ.

Finally we have

∫

Ck,t

|Pt(f)− P̃t(f)|dµ ≤
∫

Ck,t

(Pt(|f |)+ P̃t(|f |))dµ =
∫

τ−1

t (Ck,t)
|f |dµ+

∫

τ̃−1

t (Ck,t)
|f |dµ̃.

Since µ̃(τ−1
t (Ck,t)) ≤ M̃µ(Ck,t), and µ(τt(C

−1
k,t )) ≤ M̃µ(Ck,t)+µ(τ−1

t (B)−B) , these

measures converge to zero (by the claim), and then the last two integrals have values

less than ε/4 for t small. This implies that

∫

B
|Pt(f)− P̃t(f)|dµ ≤ ε

for t small, which finishes the proof.
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Proof of theorem 6. Let f ∈ L1
µ(X) and ε > 0 arbitrary. We take a sequence

{fn}n∈N converging to f and such that each fn has compact support. Then we have,

as in the proof of Theorem 4, that

∫

X
|Pt(f)− f |dµ ≤ 2‖f − fn‖L1 +

∫

X
|Pt(fn)− fn|dµ.

If we take n0 ∈ N such that ‖f − fn0
‖ ≤ ε/4 then we have

∫

X
|Pt(f)− f |dµ ≤

ε

2
+
∫

X
|Pt(fn0

)− fn0
|dµ.

If K is a compact set containing supp(fn0
) then

∫

X
|Pt(f)− f |dµ ≤

ε

2
+
∫

K
|Pt(fn0

)− fn0
|dµ+

∫

X−K
|Pt(fn0

)|dµ.

By lemma 5 we have, for t small enough,

∫

K
|Pt(fn0

)− fn0
|dµ ≤

ε

4
.

Also,
∫

X−K
|Pt(fn0

)|dµ ≤
∫

X−K
Pt(|fn0

|)dµ =
∫

τ−1

t (X−K)
|fn0

|dµ.

Since
∫

X−K |fn0
|dµ = 0 and µ{τ−1

t (X −K)− (X −K)} converges to zero, we have,

for t small,
∫

X−K
|Pt(fn0

)|dµ ≤
ε

4
.

This implies that for small t we have
∫

X
|Pt(f)− f |dµ ≤ ε,

which finishes the proof.

6 Strong continuity in L1
loc

Since L1
loc(X) is not a Banach space, the aproach of section 2.3 is not available here.

However, there is a more general setting of semigroup theory for locally convex
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spaces (see [7]). In this case, the hypothesis for the family {Tt}t≥0 of continuous

linear operators Tt : L → L are the following:

i) T0 = Id,

ii) Tt ◦ Ts = Tt+s for all t, s ≥ 0,

iii) limt→t0 Tt(f) = Tt0(f) for all t0 ≥ 0 and f ∈ L , and

iv) {Tt}t≥0 is an equicontinuous family, i.e., for any continuous seminorm p on L

there exist a continuous seminorm q such that p(Tt(f)) ≤ q(f) for all t ≥ 0

and f ∈ L.

If these conditions are satisfied, then the equality A(f) = 0 is equivalent to

Tt(f) = f for all t ≥ 0.

We consider the case where L = L1
µ,loc(X) and {Tt}t≥0 is the Fröbenius–Perron

semigroup of linear operators associated to a semidynamical system {τt}t≥0 . Since

conditions i) and ii) holds trivially, we consider conditions iii) and iv). For this we

assume condition (9) and that the semidynamical system is strongly proper, i.e.,

for all compact set K the set K̃ = ∪t≥0τ
−1
t (K) is a compact set. This hypothesis

is restrictive, but it permits to continue with our approach. In fact, condition iv)

follows from it since for all f ≥ 0 and all t ≥ 0 we have

∫

K
Pt(f)dµ =

∫

τ−1

t (K)
fdµ ≤

∫

K̃
fdµ.

Finally, using the method of the proof of theorem 6, it is possible to prove that

condition iii) also holds. Then, we have extended theorem 6 to L1
µ,loc(X) for a large

class of systems defined over X .
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